Eliseo Ferrante

Learn More
Swarm robotics is an approach to collective robotics that takes inspiration from the self-organized behaviors of social animals. Through simple rules and local interactions, swarm robotics aims at designing robust, scalable, and flexible collective behaviors for the coordination of large numbers of robots. In this paper, we analyze the literature from the(More)
Swarm robotics systems are characterized by decentralized control, limited communication between robots, use of local information, and emergence of global behavior. Such systems have shown their potential for flexibility and robustness [1]-[3]. However, existing swarm robotics systems are by and large still limited to displaying simple proof-of-concept(More)
We present a novel multi-robot simulator named ARGoS. ARGoS is designed to simulate complex experiments involving large swarms of robots of different types. ARGoS is the first multi-robot simulator that is at the same time both efficient (fast performance with many robots) and flexible (highly customizable for specific experiments). Novel design choices in(More)
Collective decision-making is a process whereby the members of a group decide on a course of action by consensus. In this paper, we propose a collective decision-making mechanism for robot swarms deployed in scenarios in which robots can choose between two actions that have the same effects but that have different execution times. The proposed mechanism(More)
In flocking, a swarm of robots moves cohesively in a common direction. Traditionally, flocking is realized using two main control rules: proximal control, which controls the cohesion of the swarm using local range-and bearing information about neighboring robots; and alignment control, which allows the robots to align in a common direction and uses more(More)
In this paper, we present a novel method for performing collective transport in the presence of obstacles. Three robots are physically connected to an object to be transported from a start to a goal location. The task is particularly challenging because the robots have a heterogeneous perception of the environment. In fact, the goal and the obstacles can be(More)
We present ARGoS, a novel open source multi-robot simulator. The main design focus of ARGoS is the real-time simulation of large heterogeneous swarms of robots. Existing robot simulators obtain scalability by imposing limitations on their extensibility and on the accuracy of the robot models. By contrast, in ARGoS we pursue a deeply modular approach that(More)
Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve(More)
We propose a self-adaptive communication strategy for controlling the heading direction of a swarm of mobile robots during flocking. We consider the problem where a small group of informed robots has to guide a large swarm along a desired direction. We consider three versions of this problem: one where the desired direction is fixed; one where the desired(More)
Reinforcement Learning research is traditionally devoted to solve single-task problems. This means that, anytime a new task is faced, learning must be restarted from scratch. Recently, several studies have addressed the issues of reusing the knowledge acquired in solving previous related tasks by transferring information about policies and value functions.(More)