Learn More
The organophosphorus compound soman, an irreversible inhibitor of cholinesterases, produces seizure activity and related brain damage. Studies using various biochemical markers of programmed cell death (PCD) suggested that soman-induced cell damage in the brain was apoptotic rather than necrotic. However, it has recently become clear that not all PCD is(More)
To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the long-term effect of soman on glial reaction and neural progenitor division was analyzed in the present study. The effect of soman poisoning(More)
Effects of low to mild doses of soman on central and blood cholinesterase (ChE) activities and anxiety behavior were studied in mice 30 min, 24 h and 7 days after poisoning. At these two latter time points, histopathological consequences of soman intoxication were also studied. The 30-microg/kg dose of soman produced 30 min after intoxication, about 35% of(More)
The neuronal nuclei (NeuN) antigen is increasingly being used as a specific marker to identify neuronal cell loss under various pathological conditions. However, recent studies pointed out that a decrease in NeuN labeling could also be due to the reduction of protein expression level or loss of antigenicity and this was not necessarily related to neuronal(More)
Gliotic scar formation and angiogenesis are two biological events involved in the tissue reparative process generally occurring in the brain after mechanically induced injury, ischemia or cerebral tumor development. For the first time, in this study, neo-vascularization and glial scar formation were investigated in the brain of soman-poisoned mice over a(More)
We investigated the long-term (up to 90 days) consequences of soman intoxication in mice on weight, motor performances (grip strength, rotarod) and mnemonic cognitive processes (T-maze, Morris water maze test). First, a relative weight loss of 20%, measured 3 days after intoxication, was evidenced as a threshold beyond which neuropathological damage was(More)
We previously described that enhanced proliferation of neural progenitors occurred in the subgranular zone (SGZ) of the dentate gyrus and in the subventricular zone (SVZ) of the mouse brain following soman poisoning. Then, a discrete number of these cells seemed to migrate and engraft into the main damaged brain regions (hippocampus; septum and amygdala)(More)
Nerve agent poisoning is known to induce full-blown seizures, seizure-related brain damage (SRBD), and lethality. Effective and quick management of these seizures is critical. In conditions of delayed treatment, presently available measures are inadequate calling for optimization of therapeutic approaches. The effects of ketamine/atropine sulfate (KET/AS)(More)
Today, organophosphate (OP) nerve agents are still considered as potential threats in both military or terrorism situations. OP agents are potent irreversible inhibitors of central and peripheral acetylcholinesterases. Pretreatment of OP poisoning relies on the subchronic administration of the reversible acetylcholinesterase (AChE) inhibitor pyridostigmine(More)
To date, studies on soman-induced neuropathology mainly focused on the hippocampus, since this brain region is a well-delimited area with easily detectable pyramidal neurons. Moreover, the hippocampus is severely damaged after soman exposure leading to a substantial alteration of behavioral mnemonic processes. The neuropathology described in the(More)