Elisabetta Marongiu

Learn More
Ischemic preconditioning (IP) has been shown to improve exercise performance and to delay fatigue. However, the precise mechanisms through which IP operates remain elusive. It has been hypothesized that IP lowers the sensation of fatigue by reducing the discharge of group III and IV nerve endings, which also regulate hemodynamics during the metaboreflex. We(More)
This study aimed at comparing maximal oxygen uptake (VO2max), maximal heart rate (HRmax), and anaerobic threshold (AT) obtained from tethered swimming (SW) and three other testing procedures: cycling (CY), running (RU), and arm cranking (AC). Variables were assessed in 12 trained male swimmers by a portable gas analyzer connected to a modified snorkel(More)
The beneficial effects of beetroot juice supplementation (BJS) have been tested during cycling, walking, and running. The purpose of the present study was to investigate whether BJS can also improve performance in swimmers. Fourteen moderately trained male master swimmers were recruited and underwent two incremental swimming tests randomly assigned in a(More)
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The(More)
Muscle ischemic preconditioning (IP) has been found to improve exercise performance in laboratory tests. This investigation aims at verifying whether performance is improved by IP during self-paced exercise (SPE) in the field. 11 well-trained male runners performed 3 randomly assigned 5 000 m self-paced running tests on an outdoor track. One was the(More)
A great bulk of evidence supports the concept that regular exercise training can reduce the incidence of coronary events and increase survival chances after myocardial infarction. These exercise-induced beneficial effects on the myocardium are reached by means of the reduction of several risk factors relating to cardiovascular disease, such as high(More)
The aim of the present study was to test the contribution of stroke volume (SV) in hemodynamic response to muscle metaboreflex activation in healthy individuals. We hypothesized that an acute decrease in cardiac afterload and preload due to the administration of a vasodilating agent could reduce postexercise muscle ischemia (PEMI)-induced SV response. Ten(More)
Spinal cord injured (SCI) individuals show an altered hemodynamic response to metaboreflex activation due to a reduced capacity to vasoconstrict the venous and arterial vessels below the level of the lesion. Exercise training was found to enhance circulating catecholamines and to improve cardiac preload and venous tone in response to exercise in SCI(More)
The aim of the present investigation was to assess the role of aging on the contribution of diastolic function during metaboreflex activation. In particular, it aimed to determine whether age-related impairment in diastolic function would produce a different hemodynamic response in elderly subjects (EG) as compared to young controls (CTL). Hemodynamic(More)
It is well known that regular exercise training can reduce the incidence of coronary events and increase survival chances after myocardial infarction. Myocardial beneficial effects are due to the reduction of several cardiovascular disease risk factors, such as high cholesterol, hypertension, metabolic syndrome, obesity, etc. Moreover, exercise can(More)