Elisabetta Ferretti

Learn More
Hedgehog (Hh) pathway has a pivotal function in development and tumorigenesis, processes sustained by stem cells (SCs). The transcription factor Nanog controls stemness acting as a key determinant of both embryonic SC self-renewal and differentiated somatic cells reprogramming to pluripotency, in concert with the loss of the oncosuppressor p53. How Nanog is(More)
A number of developmental cues underlie proper brain morphogenesis and plasticity. Hedgehog (Hh) signaling pathway plays a critical role in determining proper embryonic patterning and cell fate determination in the central nervous system. Embryonic and adult neural progenitor cells are mostly responsive to Hh signaling, thereby sustaining developmental and(More)
Ganglioglioma (GG) and pilocytic astrocytoma (PA) represent the most frequent low-grade gliomas (LGG) occurring in paediatric age. LGGs not amenable of complete resection (CR) represent a challenging subgroup where traditional treatments often fail. Activation of the MAP Kinase (MAPK) pathway caused by the BRAFV600E mutation or the KIAA1549-BRAF fusion has(More)
The use of miRNAs as biomarkers has gained growing interest in the last few years. Their role in regulating a great variety of targets and, as a consequence, multiple pathways, makes their use in diagnostics a powerful tool to be exploited for early detection of disease, risk assessment and prognosis and for the design of innovative therapeutic strategies.(More)
The transcription factor Nanog plays a critical role in the self-renewal of embryonic stem cells as well as in neural stem cells (NSCs). microRNAs (miRNAs) are also involved in stemness regulation. However, the miRNA network downstream of Nanog is still poorly understood. High-throughput screening of miRNA expression profiles in response to modulated levels(More)
During the early development of the cerebellum, a burst of granule cell progenitor (GCP) proliferation occurs in the outer external granule layer (EGL), which is sustained mainly by Purkinje cell-derived Sonic Hedgehog (Shh). Shh response is interrupted once GCPs move into the inner EGL, where granule progenitors withdraw proliferation and start(More)
Medulloblastoma, the most common brain tumor in childhood, appears to originate from cerebellar granule cell precursors (GCPs), located in the external granular layer (EGL) of the cerebellum. The antiproliferative gene PC3 (Tis21/BTG2) promotes cerebellar neurogenesis by inducing GCPs to shift from proliferation to differentiation. To assess whether PC3 can(More)
During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small(More)
Subversion of signals that physiologically suppress Hedgehog pathway results in aberrant neural progenitor development and medulloblastoma, a malignancy of the cerebellum. The Hedgehog antagonist RENKCTD11 maps to chromosome 17p13.2 and is involved in the withdrawal of the Hedgehog signaling at the granule cell progenitor transition from the outer to the(More)