Elisabetta Ada Cavalcanti-Adam

Learn More
To study the function behind the molecular arrangement of single integrins in cell adhesion, we designed a hexagonally close-packed rigid template of cell-adhesive gold nanodots coated with cyclic RGDfK peptide by using block-copolymer micelle nanolithography. The diameter of the adhesive dots is < 8 nm, which allows the binding of one integrin per dot.(More)
Integrin-mediated adhesion is regulated by multiple features of the adhesive surface, including its chemical composition, topography, and physical properties. In this study we investigated integrin lateral clustering, as a mechanism to control integrin functions, by characterizing the effect of nanoscale variations in the spacing between adhesive RGD(More)
Cell-extracellular matrix (cell-ECM) interactions mediated by integrin receptors are essential for providing positional and environmental information necessary for many cell functions, such as proliferation, differentiation and survival. In vitro studies on cell adhesion to randomly adsorbed molecules on substrates have been limited to sub-micrometer(More)
Cell interactions with adhesive surfaces play a vital role in the regulation of cell proliferation, viability, and differentiation, and affect multiple biological processes. Since cell adhesion depends mainly on the nature and density of the adhesive ligand molecules, spatial molecular patterning, which enables the modulation of adhesion receptor(More)
The activation of well-defined numbers of integrin molecules in predefined areas by adhesion of tissue cells to biofunctionalized micro-nanopatterned surfaces was used to determine the minimum number of activated integrins necessary to stimulate focal adhesion formation. This was realized by combining micellar and conventional e-beam lithography, which(More)
Living cells are complex entities whose remarkable, emergent capacity to sense, integrate, and respond to environmental cues relies on an intricate series of interactions among the cell’s macromolecular components. Defects in mechanosensing, transduction,or responses underlie many diseases such as cancers, immune disorders, cardiac hypertrophy, genetic(More)
Despite tremendous progress in recent years, nanopatterning of hydrated polymeric systems such as hydrogels still represents a major challenge. Here, we employ block copolymer nanolithography to arrange gold nanoparticles on a solid template, followed by the transfer of the pattern to a polymeric hydrogel. In the next step, these nanoparticles serve as(More)
During adhesion and spreading, cells form micrometer-sized structures comprising transmembrane and intracellular protein clusters, giving rise to the formation of what is known as focal adhesions. Over the past two decades these structures have been extensively studied to elucidate their organization, assembly, and molecular composition, as well as to(More)
Bone extracellular matrix consists of a network of proteins in which growth factors, like bone morphogenetic protein 2 (BMP-2), are embedded and released upon matrix turnover and degradation. Recombinant human (rh)BMP-2 shows promise in enhancing bone fracture repair, although issues regarding finding a suitable delivery system still limit its extensive(More)
Several studies have reported the beneficial effects of mesenchymal stem cells (MSCs) in tissue repair and regeneration. New sources of stem cells in adult organisms are continuously emerging; dental tissues have been identified as a source of postnatal MSCs. Dental bud is the immature precursor of the tooth, is easy to access and we show in this study that(More)