Elisabeth R. M. Tillier

Learn More
Cellular processes often depend on stable physical associations between proteins. Despite recent progress, knowledge of the composition of human protein complexes remains limited. To close this gap, we applied an integrative global proteomic profiling approach, based on chromatographic separation of cultured human cell extracts into more than one thousand(More)
MOTIVATION Multiple sequence alignments of homologous proteins are useful for inferring their phylogenetic history and to reveal functionally important regions in the proteins. Functional constraints may lead to co-variation of two or more amino acids in the sequence, such that a substitution at one site is accompanied by compensatory substitutions at(More)
Substitution matrices have been useful for sequence alignment and protein sequence comparisons. The BLOSUM series of matrices, which had been derived from a database of alignments of protein blocks, improved the accuracy of alignments previously obtained from the PAM-type matrices estimated from only closely related sequences. Although BLOSUM matrices are(More)
Gene order in bacteria is poorly conserved during evolution. For example, although many homologous genes are shared by the proteobacteria Escherichia coli, Haemophilus influenzae and Helicobacter pylori, their relative positions are very different in each genome, except local functional clusters such as operons. The complete sequences of the more closely(More)
There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs. We tested nine of the most(More)
In comparative genomic studies, syntenic groups of homologous sequence in the same order have been used as supplementary information that can be used in helping to determine the orthology of the compared sequences. The assumption is that orthologous gene copies are more likely to share the same genome positions and share the same gene neighbors. In this(More)
General protein evolution models help determine the baseline expectations for the evolution of sequences, and they have been extensively useful in sequence analysis and for the computer simulation of artificial sequence data sets. We have developed a new method of simulating protein sequence evolution, including insertion and deletion (indel) events in(More)
We present a model for the evolution of paired bases in RNA sequences. The new model allows for the instantaneous rate of substitution of both members of a base pair in a compensatory substitution (e.g., A-U-->G-C) and expands our previous work by allowing for unpaired bases or noncanonical pairs. We implemented the model with distance and maximum(More)