Elisabeth M. Perchellet

Learn More
The anti-oxidant and the anti-tumor-promotion activities of several hydrolyzable tannins (HTs), including a commercial tannic-acid (TA) mixture, were examined in mouse skin treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo. A single application of TPA gradually increases the hydroperoxide (HPx)-producing activity of the epidermis, which is(More)
Naturally occurring plant phenols with antimutagenic and anticarcinogenic activities were tested for their abilities to inhibit the ornithine decarboxylase (ODC) response linked to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical applications of tannic acid (TA) inhibit remarkably and in a dose-dependent manner TPA-induced ODC(More)
A single 2-mg dose of garlic oil applied 30 minutes before a single carcinogenic dose of 7,12-dimethylbenz[a]-anthracene (DMBA) inhibited papilloma production in Sencar mice. The three groups were controls (Group 1), garlic oil applied 30 minutes before DMBA (Group 2), and garlic oil applied 30 minutes after DMBA (Group 3). The percents of mice with(More)
Garlic oil, onion oil and one of its constituents, dipropenyl sulfide, all increase, to diverse degrees, glutathione (GSH) peroxidase (GSH:H2O2 oxidoreductase, EC activity in isolated epidermal cells incubated in the presence or absence of the potent tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA). The stimulatory effects of these oils(More)
Gallium chloride (GaCl3), an antitumor agent with antagonistic action on iron, magnesium and calcium, was tested for its ability to alter the polymerization of purified tubulin (2.2 mg/ml) in a cell-free system in vitro. GaCl3 (250 microM) does not mimic the effect of 10 microM paclitaxel and, therefore, is not a microtubule (MT)-stabilizing agent that can(More)
Ellagic acid and gallic acid and its derivatives, applied topically to female CF-1 mice 20 min before each 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment inhibit the inductions of epidermal ornithine decarboxylase activity, hydroperoxide production and DNA synthesis caused by this potent tumor promoter in relation with their abilities to inhibit the(More)
The production of hydroperoxides is rapidly increased and remains at 200-280% of the control 1-24 h after the second daily application of 17 nmol of 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin in vivo. The levels of hydroperoxides are increased 1.63-, 2.64-, 4.07-, and 4.31-fold 18 h after one, two, three, or four applications of TPA at 24-h(More)
The two-step initiation-promotion protocol for the induction of skin tumors in mice is a convenient model to elucidate what molecular events are involved in the multistage process of carcinogenesis and how they can be modulated. The current theories concerning the mechanisms of skin tumor initiation, stages 1 and 2 of tumor promotion, and tumor progression(More)
The levels of hydroperoxides in mouse skin (epidermis + dermis) homogenates incubated in the presence and absence of enzymic and non-enzymic generators of reactive oxygen species are rapidly increased by 12-O-tetradecanoylphorbol-13-acetate (TPA). Moreover, the homogenates prepared from skins treated repeatedly with TPA or 7,12-dimethylbenz[a]anthracene(More)
Synthetic analogs of 1,4-anthraquinone (AQ code number), a compound that mimics the antiproliferative effects of daunorubicin (daunomycin) in the nanomolar range in vitro but has the advantage of blocking nucleoside transport and retaining its efficacy in multidrug-resistant tumor cells, were tested for their ability to induce apoptosis in the HL-60 cell(More)