Learn More
OBJECTIVE Beta-adrenergic stimulation modulates cardiac contractility through protein kinase A (PKA), which phosphorylates proteins such as troponin I (cTnI) and C-protein (cMyBP-C). The relative contributions of cTnI and cMyBP-C to the regulation of myofilament Ca(2+) sensitivity are still controversial because of difficulty in targeting specific protein(More)
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C). The mechanisms leading from gene mutations to the HCM phenotype remain incompletely understood, partially because current mouse models of HCM do not faithfully reflect the human situation and early hypertrophy confounds the(More)
AIMS Familial hypertrophic cardiomyopathy (FHC) is caused by mutations in genes encoding sarcomeric proteins. Incomplete penetrance suggests the existence of modifier genes. Calmodulin (CaM) could be of importance given the key role of Ca(2+) for cardiac contractile function and growth. Any variant that affects CaM expression and/or function may impact on(More)
The role of cardiac myosin-binding protein C (cMyBP-C) in cardiac contraction is still not fully resolved. Experimental ablation of cMyBP-C by various means resulted in inconsistent changes in Ca2+ sensitivity and increased velocity of force of skinned preparations. To evaluate how these effects are integrated in an intact, living myocyte context, we(More)
RATIONALE Mutations in the MYBPC3 gene encoding cardiac myosin-binding protein (cMyBP)-C are frequent causes of hypertrophic cardiomyopathy, but the mechanisms leading from mutations to disease remain elusive. OBJECTIVE The goal of the present study was therefore to gain insights into the mechanisms controlling the expression of MYBPC3 mutations. (More)
OBJECTIVE Endotoxin (LPS)-induced acute cardiac failure during sepsis is associated with alterations in G protein mediated signal transduction. We therefore examined the expression of the G proteins G(i), G(q), and G(s) and of four 'regulators of G protein signaling' (RGS) proteins, RGS1, RGS4, RGS5, and RGS16 in rat hearts. METHODS For in vivo(More)
AIMS Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in(More)
DNA double-strand breaks (DSBs) and blocked replication forks resulting from bulky adducts and inhibitors of replication activate the DNA damage response (DDR), a signaling pathway marked by phosphorylation of histone 2AX (H2AX). The phosphorylated form, γH2AX, accumulates at the site of the damage and can be visualized as foci by immunocytochemistry. The(More)
RNA trans-splicing has been explored as a therapeutic option for a variety of genetic diseases, but not for cardiac genetic disease. Hypertrophic cardiomyopathy (HCM) is an autosomal-dominant disease, characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction. MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C) is frequently(More)