Elisabeth C. W. van Straaten

Learn More
We introduce a directed phase lag index to investigate the spatial and temporal pattern of phase relations of oscillatory activity in a model of macroscopic structural and functional brain networks. Direction of information flow was determined with the directed phase lag index (dPLI) defined as the probability that the instantaneous phase of X was smaller(More)
Brain connectivity studies have revealed that highly connected 'hub' regions are particularly vulnerable to Alzheimer pathology: they show marked amyloid-β deposition at an early stage. Recently, excessive local neuronal activity has been shown to increase amyloid deposition. In this study we use a computational model to test the hypothesis that hub regions(More)
Age-related white matter changes (WMC) are thought to be a marker of vascular pathology, and have been associated with motor and cognitive deficits. In the present study, an optimized artificial neural network was used as an automatic segmentation method to produce probabilistic maps of WMC in a clinical multi-center study. The neural network uses(More)
BACKGROUND Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and(More)
White matter hyperintensities (WMH) are a frequent finding on brain MRI of elderly subjects, and have been associated with various risk factors, as well as with development of cognitive and functional impairment. While an overall association between WMH load and risk factors is well described, possible spatially restricted vulnerability remains to be(More)
Pathology in Alzheimer's disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using "virtual MEG(More)
  • 1