Elisa De Laurentiis

Learn More
This work shows that the main photochemical pathways of acetaminophen (APAP) transformation in surface waters would be direct photolysis (with quantum yield of (4.57 ± 0.17)⋅10(-2)), reaction with CO3(-·) (most significant at pH > 7, with second-order rate constant of (3.8 ± 1.1)⋅10(8) M(-1) s(-1)) and possibly, for dissolved organic carbon higher than 5 mg(More)
The irradiation of L-tryptophan, L-tyrosine and 4-phenoxyphenol in aqueous solution produced compounds with similar fluorescence properties as humic substances, and with absorption spectra that were significantly extended into the UVA and visible regions compared to the starting compounds. The irradiated systems had photosensitizing properties, as proven by(More)
PURPOSE To compare the levels of gadolinium in the blood, cerebrum, cerebellum, liver, femur, kidneys, and skin after multiple exposure of rats to the macrocyclic gadolinium-based contrast agents (GBCAs) gadoterate, gadobutrol, and gadoteridol. MATERIALS AND METHODS Fifty male Wistar Han rats were randomized to three exposure groups (n = 15 per group) and(More)
It is shown here that carbamazepine (CBZ) would undergo direct photolysis and reaction with (•)OH as the main phototransformation pathways in surface waters. Environmental lifetimes are expected to vary from a few weeks to several months, and predictions are in good agreement with available field data. Acridine (I) and(More)
Here we show that fluorescent compounds that could be classified as "M-like" (marine-like) fulvic acids are formed upon phototransformation of phenol by a triplet sensitiser (anthraquinone-2-sulphonate, AQ2S). The relevant process most likely involves phenol oxidation to phenoxyl radical by triplet AQ2S, followed by dimerisation of phenoxyl radicals into(More)
Water samples from shallow lakes located in Terra Nova Bay, Antarctica, were taken in the austral summer season and characterized for chemical composition, optical features, fluorescence excitation-emission matrix (EEM) and photoactivity toward the generation of (•)OH, (1)O2, and (3)CDOM* (triplet states of chromophoric dissolved organic matter). The(More)
We show that the main photochemical processes involved in the phototransformation of anionic ibuprofen (IBP) in surface waters are the reaction with (•)OH, the direct photolysis and possibly the reaction with the triplet states of chromophoric dissolved organic matter ((3)CDOM). These conclusions were derived by use of a model of surface water(More)
Anthraquinone-2-sulphonate (AQ2S) is a triplet sensitiser that has recently been used to model the photoreactivity of chromophoric dissolved organic matter (CDOM). We show that the photolysis quantum yield of AQ2S under UVA irradiation varies from (3.4 ± 0.2) × 10(-3) at μM AQ2S levels to (1.8 ± 0.1) × 10(-2) at 3 mM AQ2S (μ±σ). This trend is consistent(More)
Dimethomorph (DMM) is a widely used fungicide that shows low toxicity for birds and mammals but can be quite toxic to aquatic organisms. The persistence of DMM in surface waters is thus of high importance, and this work modelled its water half-life time due to photochemical processes. Depending on environmental conditions (e.g. water chemistry, depth,(More)
The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br(•)/Br(2)(-•), with rate constant (2-4)⋅10(9)M(-1)s(-1) that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ((3)CDOM*). The brominating agent Br(2)(-•)(More)