Learn More
Sarcoplasmic reticulum (SR) Ca²(+) leak is an important component of cardiac Ca²(+) signalling. Together with the SR Ca²(+)-ATPase (SERCA)-mediated Ca²(+) uptake, diastolic Ca²(+) leak determines SR Ca²(+) load and, therefore, the amplitude of Ca²(+) transients that initiate contraction. Spontaneous Ca²(+) sparks are thought to play a major role in SR(More)
In the heart, coupling between excitation of the surface membrane and activation of contractile apparatus is mediated by Ca released from the sarcoplasmic reticulum (SR). Several components of Ca machinery are perfectly arranged within the SR network and the T-tubular system to generate a regular Ca cycling and thereby rhythmic beating activity of the(More)
While β-adrenergic receptor (β-AR) stimulation leads to positive inotropic effects, it can also induce arrhythmogenic Ca2+ waves. β-AR stimulation increases mitochondrial oxygen consumption and, thereby, the production of reactive oxygen species (ROS). We therefore investigated the role of ROS in the generation of Ca2+ waves during β-AR stimulation in(More)
Programmed cell death of cardiomyocytes following myocardial ischemia increases biomechanical stress on the remaining myocardium, leading to myocardial dysfunction that may result in congestive heart failure or sudden death. Nogo-A is well characterized as a potent inhibitor of axonal regeneration and plasticity in the central nervous system, however, the(More)
Sarcoplasmic reticulum (SR) Ca(2+) leak determines SR Ca(2+) content and, therefore, the amplitude of global Ca(2+) transients in ventricular myocytes. However, it remains unresolved to what extent Ca(2+) leak can be modulated by cytosolic [Ca(2+)] ([Ca(2+)](i)). Here, we studied the effects of [Ca(2+)](i) on SR Ca(2+) leak in permeabilized rabbit(More)
While β-adrenergic receptor (β-AR) stimulation ensures adequate cardiac output during stress, it can also trigger life-threatening cardiac arrhythmias. We have previously shown that proarrhythmic Ca(2+) waves during β-AR stimulation temporally coincide with augmentation of reactive oxygen species (ROS) production. In this study, we tested the hypothesis(More)
The zebrafish serves as a promising transgenic animal model that can be used to study cardiac Ca2+ regulation. However, mechanisms of sarcoplasmic reticulum (SR) Ca2+ handling in the zebrafish heart have not been systematically explored. We found that in zebrafish ventricular myocytes, the action potential-induced Ca2+ transient is mainly (80 %) mediated by(More)
Multifunctional Ca(2+)-calmodulin-dependent protein kinase (CaMKII) is a Ser/Thr protein kinase uniformly distributed within the sarcoplasmic reticulum (SR) of skeletal muscle. In fast twitch muscle, no specific substrates of CaMKII have yet been identified in nonjunctional SR. Previous electron microscopy data showed that glycogen particles containing(More)
Single ryanodine receptor (RyR) Ca(2+) flux amplitude (i(Ca-RyR)) decreases as intra-sarcoplasmic reticulum (SR) Ca(2+) levels fall during a cardiac Ca(2+) spark. Since i(Ca-RyR) drives the inter-RyR Ca(2+)-induced Ca(2+) release (CICR) that underlies the spark, decreasing i(Ca-RyR) may contribute to spark termination because RyRs that spontaneously close(More)
Of the major cellular antioxidant defenses, glutathione (GSH) is particularly important in maintaining the cytosolic redox potential. Whereas the healthy myocardium is maintained at a highly reduced redox state, it has been proposed that oxidation of GSH can affect the dynamics of Ca(2+)-induced Ca(2+) release. In this study, we used multiple approaches to(More)