Learn More
We survey developments in artificial neural networks, in behavior-based robotics, and in evolutionary algorithms that set the stage for evolutionary robotics (ER) in the 1990s. We examine the motivations for using ER as a scientific tool for studying minimal models of cognition, with the advantage of being capable of generating integrated sensorimotor(More)
Swarm robotics systems are characterized by decentralized control, limited communication between robots, use of local information, and emergence of global behavior. Such systems have shown their potential for flexibility and robustness [1]-[3]. However, existing swarm robotics systems are by and large still limited to displaying simple proof-of-concept(More)
This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to(More)
This paper provides an overview of the SWARM-BOTS project, a robotic project sponsored by the Future and Emerging Technologies program of the European Commission. The paper illustrates the goals of the project, the robot prototype and the 3D simulator we built. It also reports on the results of experimental work in which distributed adaptive controllers are(More)
Basic elements of cognition have been identified in the behaviour displayed by animal collectives, ranging from honeybee swarms to human societies. For example, an insect swarm is often considered a “super-organism” that appears to exhibit cognitive behaviour as a result of the interactions among the individual insects and between the insects and the(More)
In this paper, we show how a simulated humanoid robot controlled by an artificial neural network can acquire the ability to manipulate spherical objects located over a table by reaching, grasping, and lifting them. The robot controller is developed through an adaptive process in which the free parameters encode the control rules that regulate the(More)
We present a first attempt to accomplish a simple object manipulation task using the self-reconfigurable robotic system swarm-bot. The number of modular entities involved, their global shape or size and their internal structure are not pre-determined, but result from a self-organized process in which the modules autonomously grasp each other and/or an(More)
Active perception refers to a theoretical approach to the study of perception grounded on the idea that perceiving is a way of acting, rather than a process whereby the brain constructs an internal representation of the world. The operational principles of active perception can be effectively tested by building robot-based models in which the relationship(More)
This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two(More)
We present the theoretical roots, the research agenda, and the results of the SWARMBOTS project, a robotic project sponsored by the Future and Emerging Technologies program of the European Commission. We describe the s-bot, a small autonomous robot with self-assembling capabilities that we designed and built over the course of the project. We report on(More)