Eliezer Lifschitz

Learn More
The systemic model for floral induction, dubbed florigen, was conceived in photoperiod-sensitive plants but implies, in its ultimate form, a graft-transmissible signal that, although activated by different stimuli in different flowering systems, is common to all plants. We show that SFT (SINGLE-FLOWER TRUSS), the tomato ortholog of FLOWERING LOCUS T (FT),(More)
Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type 'indeterminate' plants, inflorescences are separated by three vegetative nodes. In 'determinate' plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by(More)
The most distinctive morphogenetic feature of leaves is their being either simple or compound. To study the basis for this dichotomy, we have exploited the maize homeobox-containing Knotted-1 (Kn1) gene in conjunction with mutations that alter the tomato compound leaf. We show that misexpression of Kn1 confers different phenotypes on simple and compound(More)
CONSTANS-Like (COL) proteins are plant-specific nuclear regulators of gene expression but do not contain a known DNA-binding motif. We tested whether a common DNA-binding protein can deliver these proteins to specific cis-acting elements. We screened for proteins that interact with two members of a subgroup of COL proteins. These COL proteins were Tomato(More)
Five genes with homology to the floral homeotic genes deficiens of Antirrhinum and agamous of Arabidopsis were isolated from tomato. Each of the five genes is unique in the genome and could be localized to a different chromosome by RFLP mapping. Four of the tomato genes (hereafter TM) are flower-specific with distinguishable temporal expression. TM4 and TM8(More)
To understand the details of the homeotic systems that govern flower development in tomato and to establish the ground rules for the judicious manipulation of this floral system, we have isolated the tomato AGAMOUS gene, designated TAG1, and examined its developmental role in antisense and sense transgenic plants. The AGAMOUS gene of Arabidopsis is(More)
The Curl (Cu) and Mouse-ear (Me) mutations of tomato cause two seemingly unrelated developmental syndromes with a wide range of pleiotropic phenotypes. Yet, the distinct morphogenic alterations in shoots, leaves, and inflorescences conferred by the two mutations appear to be caused by unchecked meristematic activity that characterizes dominant mutations in(More)
The florigen paradigm implies a universal flowering-inducing hormone that is common to all flowering plants. Recent work identified FT orthologues as originators of florigen and their polypeptides as the likely systemic agent. However, the developmental processes targeted by florigen remained unknown. Here we identify local balances between SINGLE FLOWER(More)
Divergent architecture of shoot models in flowering plants reflects the pattern of production of vegetative and reproductive organs from the apical meristem. The SELF-PRUNING (SP) gene of tomato is a member of a novel CETS family of regulatory genes (CEN, TFL1, and FT) that controls this process. We have identified and describe here several proteins that(More)
A gene coding for a polypeptide abundant in tomato floral meristems was isolated and shown to represent a tomato 66.3-kD polyphenoloxidase. Analysis of cDNA clones and a corresponding intronless genomic clone indicated that the plastid-bound 587-residue-long polypeptide, designated P2, contains two conserved copper-binding domains, similar to those found in(More)