Elias R. Melhem

Learn More
Diffusion-tensor MR imaging of the brain is an objective method that can measure diffusion of water in tissue noninvasively. Five adult volunteers participated in this study that was performed to evaluate the potential of gradient- and spin-echo readout for diffusion-tensor imaging by comparing it with single-shot spin-echo echo-planar imaging. Gradient-(More)
Diffusion-tensor fiber tracking was used to identify the cores of several long-association fibers, including the anterior (ATR) and posterior (PTR) thalamic radiations, and the uncinate (UNC), superior longitudinal (SLF), inferior longitudinal (ILF), and inferior fronto-occipital (IFO) fasciculi. Tracking results were compared to existing anatomical(More)
Left hemispheric language dominance is well established, but the structural substrate for this functional asymmetry is uncertain. We report a strong asymmetry in the relative fiber density of the arcuate fasciculus, a white matter pathway associated with language that connects the frontal, temporal, and parietal lobes. Measured with diffusion tensor(More)
The objective of this study is to investigate the use of pattern classification methods for distinguishing different types of brain tumors, such as primary gliomas from metastases, and also for grading of gliomas. The availability of an automated computer analysis tool that is more objective than human readers can potentially lead to more reliable and(More)
RATIONALE AND OBJECTIVES Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. MATERIALS AND METHODS In this article, we present a computer-assisted WML segmentation method, based on(More)
Spatial normalization of diffusion tensor images plays a key role in voxel-based analysis of white matter (WM) group differences. Currently, it has been achieved using low-dimensional registration methods in the large majority of clinical studies. This paper aims to motivate the use of high-dimensional normalization approaches by generating evidence of(More)
OBJECTIVE This study was undertaken to compare whole-body turbo short inversion time inversion recovery MR imaging and 99mTc-methylene diphosphonate planar scintigraphy in the examination of patients with suspected skeletal metastases. SUBJECTS AND METHODS Twenty-five patients with known or suspected skeletal metastatic disease underwent both whole-body(More)
Diffusion tensor imaging plays a key role in our understanding of white matter (WM) both in normal populations and in populations with brain disorders. Existing techniques focus primarily on using diffusivity-based quantities derived from diffusion tensor as surrogate measures of microstructural tissue properties of WM. In this paper, we describe a novel(More)
BACKGROUND AND PURPOSE Glioblastomas, brain metastases, and PCLs may have similar enhancement patterns on MR imaging, making the differential diagnosis difficult or even impossible. The purpose of this study was to determine whether a combination of DTI and DSC can assist in the differentiation of glioblastomas, solitary brain metastases, and PCLs. (More)