Elias N. Glytsis

Learn More
The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and(More)
Designs are given for gallium-arsenide subwavelength grating retarders operating at 10.6 μm. A design procedure is detailed that takes into account the reflections at all surfaces and that uses numerical optimization to improve the transmittance of the retarders to nearly 100%. It is shown that the homogeneous uniaxial layer model for subwavelength gratings(More)
We analyze the polarization-dependent performance and the loss performance of volume grating couplers using a leaky-mode approach in conjunction with rigorous coupled-wave analysis for two configurations: the volume grating in the cover layer and the volume grating in the waveguide. The angular dependence of TE and TM polarization coupling efficiency is(More)
A one-dimensional 280-nm period silicon grating designed to exhibitpolarization-dependent reflection or antireflection behavior at visiblewavelengths has been fabricated and tested. For normally incident575-nm light, this grating reflects less than 3% of the incidentradiation polarized perpendicular to the grating grooves andapproximately 23% of the(More)
The range of validity of the scalar diffraction analysis is quantified for the case of two-dimensionally-periodic diffractive optical elements (crossed gratings). Three canonical classes of two-dimensionally-periodic grating structures are analyzed by using the rigorous coupled-wave analysis as well as the scalar diffraction analysis. In all cases the(More)
Both a nonfocusing and a focusing preferential-order volume grating waveguide coupler were designed, fabricated, and tested. These volume grating couplers are designed to outcouple a 633-nm wave guided in an adjacent polyimide waveguide film. The slanted-fringe volume gratings are recorded holographically by the interference of two 364-nm waves. The(More)
The validity of various homogeneous layer models for high-spatial-frequency rectangular-groove (binary) dielectric surface-relief gratings is examined for both nonconical and conical diffraction. In each model the grating is described by a slab of uniaxial material with its optic axis parallel to the grating vector. The ordinary and principal extraordinary(More)
The angular sensitivities of slanted volume gratings (VGs) illuminated by three-dimensional (3-D) converging-diverging spherical Gaussian beams for substrate-mode optical interconnects in microelectronics are analyzed by application of 3-D finite-beam rigorous coupled-wave analysis. Angular misalignments about the z, y, and x axes that correspond to yaw,(More)
Guided-mode resonant grating filters have numerous applications. However, in weakly modulated gratings designed for use at normal incidence, the filtering resonance of these subwavelength-period devices splits for angles of incidence that are even slightly off normal incidence. Strongly modulated gratings are designed that essentially overcome this(More)