Elias Konstantinidis

Learn More
Performance prediction of GPU kernels is generally a tedious procedure with unpredictable results. In this paper, we provide a practical model for estimating performance of CUDA kernels on GPU hardware in an automated manner. First, we propose the quadrant-split model, an alternative of the roofline visual performance model, which provides insight on the(More)
Modern Graphics Processing Units (GPUs) have evolved to high performance general purpose processors, forming an alternative to CPUs. However, programming them effectively has proven to be a challenge, not only due to the mandatory requirement of extracting massive fine grained parallelism but also due to its susceptible performance on memory traffic. Apart(More)
In this paper we study a parallel form of the SOR method for the numerical solution of the Convection Diffusion equation suitable for GPUs using CUDA. To exploit the parallelism offered by GPUs we consider the fine grain parallelism model. This is achieved by considering the local relaxation version of SOR. More specifically, we use SOR with red black(More)
Forced nonharmonic excitation of the two-dimensional flow about a circular cylinder is studied by numerical simulations at mean Reynolds numbers of 180 and 150. Moderate deviations of the forced inflow velocity waveform from a pure harmonic generate different modes of phase-locked vortex formation in the cylinder wake, involving combinations of single(More)
  • 1