Elias Gabriel Minian

Learn More
We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence(More)
A global action is the algebraic analogue of a topological manifold. This construction was introduced in first place by A. Bak as a combinatorial approach to K-Theory and the concept was later generalized by Bak, Brown, Minian and Porter to the notion of groupoid atlas. In this paper we define and investigate homotopy invariants of global actions and(More)
We introduce the theory of strong homotopy types of simplicial complexes. Similarly to classical simple homotopy theory, the strong homotopy types can be described by elementary moves. An elementary move in this setting is called a strong collapse and it is a particular kind of simplicial collapse. The advantage of using strong collapses is the existence(More)
For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X, whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r generators, X has n(r+2) points. This construction improves previous results by G. Birkhoff and M.C. Thornton. The relationship between automorphisms and homotopy types is(More)
We investigate one-point reduction methods of finite topological spaces. These methods allow one to study homotopy theory of cell complexes by means of elementary moves of their finite models. We also introduce the notion of h-regular CWcomplex, generalizing the concept of regular CW-complex, and prove that the h-regular CW-complexes, which are a sort of(More)