Eliane Kobayashi

Learn More
Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG-fMRI) during interictal epileptiform discharges can result in positive (activation) and negative (deactivation) changes in the blood oxygenation level-dependent (BOLD) signal. Activation probably reflects increased neuronal activity and energy demand, but deactivation is more(More)
PURPOSE Simultaneous EEG and functional MRI (fMRI) allows measuring metabolic changes related to interictal spikes. Our objective was to investigate blood oxygenation level-dependent (BOLD) responses to temporal lobe (TL) spikes by using EEG-fMRI recording. METHODS We studied 35 patients who had a diagnosis of temporal lobe epilepsy (TLE) and active TL(More)
Grey matter heterotopia are commonly associated with refractory epilepsy. Depth electrodes recordings have shown that epileptiform activity can be generated within these lesions, and also at a distance in the neocortex. Heterotopia seem to be part of a more complex circuitry involving also the surrounding and distant cerebral cortex. Blood oxygenation(More)
To investigate the coupling between the hemodynamic and metabolic changes following functional brain activation as well as interictal epileptiform discharges (IEDs), blood oxygenation level dependent (BOLD), perfusion and oxygen consumption responses to a unilateral distal motor task and interictal epileptiform discharges (IEDs) were examined via continuous(More)
Patients with epilepsy often present in their electroencephalogram (EEG) short electrical potentials (spikes or spike-wave bursts) that are not accompanied by clinical manifestations but are of important diagnostic significance. They result from a population of abnormally hyperactive and hypersynchronous neurons. It is not easy to determine the location of(More)
Combined EEG-fMRI has recently been used to explore the BOLD responses to interictal epileptiform discharges. This study examines whether misspecification of the form of the haemodynamic response function (HRF) results in significant fMRI responses being missed in the statistical analysis. EEG-fMRI data from 31 patients with focal epilepsy were analysed(More)
Simultaneous EEG and fMRI recordings permit the non-invasive investigation of the generators of spontaneous brain activity such as epileptic spikes. Despite a growing interest in this technique, the precise relationship between its results and the actual regions of activated cortex is not clear. In this study, we have quantified for the first time the(More)
The use of combined EEG-fMRI to study interictal epileptiform activity is increasing and has great potential as a clinical tool, but the haemodynamic response to epileptiform activity remains incompletely characterised. To this end, 19 data sets from 14 patients with prolonged bursts of focal or generalised interictal epileptiform activity lasting up to 15(More)
BACKGROUND Combined recording of EEG and fMRI has shown changes in blood oxygenation level dependent (BOLD) signal during focal interictal epileptic spikes. Due to difficult assessment of seizures inside the scanner little is known about BOLD changes during seizures. OBJECTIVES To describe BOLD changes related to brief focal electrographic seizures in a(More)
Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using(More)