Eli Zamir

Learn More
The transition of cell–matrix adhesions from the initial punctate focal complexes into the mature elongated form, known as focal contacts, requires GTPase Rho activity. In particular, activation of myosin II–driven contractility by a Rho target known as Rho-associated ki-nase (ROCK) was shown to be essential for focal contact formation. To dissect the(More)
BACKGROUND Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and(More)
We extend the in vitro principle of co-immunoprecipitation to quantify dynamic protein interactions in living cells. Using a multiresolution implementation of fluorescence correlation spectroscopy to achieve maximal temporal resolution, we monitored the interactions of endogenous bait proteins, recruited by quantum dots, with fluorescently tagged prey. With(More)
How can the integrin adhesome get self-assembled locally, rapidly, and correctly as diverse cell-matrix adhesion sites? Here, we investigate this question by exploring the cytosolic state of integrin-adhesome components and their dynamic exchange between adhesion sites and cytosol. Using fluorescence cross-correlation spectroscopy (FCCS) and fluorescence(More)
Integrin adhesome proteins bind each other in alternative manners, forming within the cell diverse cell-matrix adhesion sites with distinct properties. An intriguing question is how such modular assembly of adhesion sites is achieved correctly solely by self-organization of their components. Here we address this question using high-throughput multiplexed(More)
Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous(More)
Motivation: Protein interactions are fundamental building blocks of biochemical reaction systems underlying cellular functions. The complexity and functionality of such systems emerge not from the protein interactions themselves but from the dependencies between these interactions. Therefore, a comprehensive approach for integrating and using information(More)
  • 1