Learn More
Human cardiac electrophysiology (EP) is a unique system for computational modelling at multiple scales. Due to the complexity of the cardiac excitation sequence, coordinated activity must occur from the single channel to the entire myocardial syncytium. Thus, sophisticated computational algorithms have been developed to investigate cardiac EP at the level(More)
Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus, we(More)
Heart failure (HF) is the end stage of cardiovascular disease, in which hypertrophic remodeling no longer meets cardiac output demand. Established animal models of HF have provided insights into disease pathogenesis. However, these models are developed on dissimilar metabolic backgrounds from humans - patients with HF are frequently overweight or obese,(More)
More than 500 hips, with either displaced fractures of the femoral neck or primary or revision total hip arthroplasty, were treated by a straight, long-stem (305-mm), Bateman-type bipolar model (BBM). The BBM was not porous coated, and it is not cemented in place. The femoral component is secured in the femoral canal by means of biomechanical fixation. It(More)
During human heart failure, the balance of cardiac energy use switches from predominantly fatty acids (FAs) to glucose. We hypothesized that this substrate shift was the result of mitochondrial degeneration; therefore, we examined mitochondrial oxidation and ultrastructure in the failing human heart by using respirometry, transmission electron microscopy,(More)
  • 1