Eliška Macková

Learn More
Oxidative stress is known to contribute to a number of cardiovascular pathologies. Free intracellular iron ions participate in the Fenton reaction and therefore substantially contribute to the formation of highly toxic hydroxyl radicals and cellular injury. Earlier work on the intracellular iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH) has(More)
Catecholamines are stress hormones and sympathetic neurotransmitters essential for control of cardiac function and metabolism. However, pathologically increased catecholamine levels may be cardiotoxic by mechanism that includes iron-catalyzed formation of reactive oxygen species. In this study, five iron chelators used in clinical practice were examined for(More)
Anthracyclines (such as doxorubicin or daunorubicin) are among the most effective anticancer drugs, but their usefulness is hampered by the risk of irreversible cardiotoxicity. Dexrazoxane (ICRF-187) is the only clinically approved cardioprotective agent against anthracycline cardiotoxicity. Its activity has traditionally been attributed to the(More)
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, orally-active tridentate iron chelator providing both effective protection against various types of oxidative stress-induced cellular injury and anticancer action. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Recently,(More)
High levels of catecholamines are cardiotoxic and may trigger acute myocardial infarction (AMI). Similarly, the synthetic catecholamine isoprenaline (ISO) evokes a pathological state similar to AMI. During AMI there is a marked increase of free iron and copper which are crucial catalysts of reactive oxygen species formation. Rutin, a natural flavonoid(More)
Iron imbalance plays an important role in oxidative stress associated with numerous pathological conditions. Therefore, iron chelation may be an effective therapeutic approach, but progress in this area is hindered by the lack of effective ligands. Also, the potential favorable effects of chelators against oxidative injury have to be balanced against their(More)
A group of 3-5-year-old children (n = 22) with a level of somatic development and physical fitness (modified Step test) that corresponded to a previously measured representative sample was studied. The depot fat proportion was 16.3 +/- 4%, and obesity was absent. Lean body mass (LBM) was 16.1 +/- 1.8 kg. As in previous studies, the fat intake was higher as(More)
Elevated catecholamine levels are known to induce damage of the cardiac tissue. This catecholamine cardiotoxicity may stem from their ability to undergo oxidative conversion to aminochromes and concomitant production of reactive oxygen species (ROS), which damage cardiomyocytes via the iron-catalyzed Fenton-type reaction. This suggests the possibility of(More)