Elena Vasyutina

Learn More
Recently mouse DNA topoisomerase I (topo) was shown to possess high affinity for a single-stranded AAGACTTAG nonanucleotide (K(i) = 2.0 microM) corresponding to the scissile strand of the minimal DNA duplex, which is necessary for cleavage of supercoiled DNA. In order to determine the most important part of the above sequence for the DNA recognition by(More)
The tissue microenvironment in chronic lymphocytic leukemia (CLL) has an increasingly recognized role in disease progression, but the molecular mechanisms of cross talk between CLL cells and their microenvironment remain incompletely defined. Bone marrow stromal cells (BMSC) protect CLL cells from apoptosis in a contact-dependent fashion, and have been used(More)
The interaction of human DNA topoisomerase I (topo I) with specific sequence oligodeoxynucleotides (ODNs) of different length and structure has been investigated. All the ODNs used were shown to be effective enzyme inhibitors and to inhibit the topo I catalyzed relaxation of scDNA in a competitive manner. Among two DNA regions (A and B) required for topo(More)
Chronic kidney disease (CKD) has become a major public health problem worldwide. Therefore, a considerable effort is currently directed to understand the molecular mechanisms of renal degenerative processes. Regardless of their initiating cause, all chronic kidney diseases (CKD) develop at some level organ fibrosis that interferes with kidney function. This(More)
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the life cycle of the retrovirus, responsible for catalysing the insertion of the viral genome into the host cell chromosome. For this reason it provides an attractive target for antiviral drug design. We synthesized a series of novel thiazole (Tz)-containing oligopeptides(More)
Dysregulated T-cell leukemia/lymphoma-1A (TCL1A), a modulator in B-cell receptor (BCR) signaling, is causally implicated in chronic lymphocytic leukemia (CLL). However, the mechanisms of the perturbed TCL1A regulation are largely unknown. To characterize TCL1A-upstream networks, we functionally screened for TCL1A-repressive micro-RNAs (miRs) and their(More)
The serine/threonine death-associated protein kinases (DAPK) provide pro-death signals in response to (oncogenic) cellular stresses. Lost DAPK expression due to (epi)genetic silencing is found in a broad spectrum of cancers. Within B-cell lymphomas, deficiency of the prototypic family member DAPK1 represents a predisposing or early tumorigenic lesion and(More)
A series of novel thiazole-containing oligopeptides (oligo-1,3-thiazolecarboxamides) interesting specifically with the minor groove of DNA was shown to inhibit human DNA topoisomerase I (topo I). Inhibitory effects of thiazole-containing oligopeptides (TCO) increase with the number of thiazole units in such compounds. Inhibitory properties of TCO containing(More)
Treatment resistance becomes a challenge at some point in the course of most patients with chronic lymphocytic leukemia (CLL). This applies to fludarabine-based regimens, and is also an increasing concern in the era of more targeted therapies. As cells with low-replicative activity rely on repair that triggers checkpoint-independent noncanonical pathways,(More)
Redox stress is a hallmark of the rewired metabolic phenotype of cancer. The underlying dysregulation of reactive oxygen species (ROS) is interconnected with abnormal mitochondrial biogenesis and function. In chronic lymphocytic leukemia (CLL), elevated ROS are implicated in clonal outgrowth and drug resistance. The pro-survival oncogene T-cell leukemia 1(More)