Elena V. Nikonova

Learn More
The impact of age on the enzymatic activities of adenosine metabolic enzymes, i.e., adenosine deaminase, adenosine kinase, cytosolic- and ecto-5'-nucleotidase have been assessed in the brain sleep/wake regulatory areas of young, intermediate and old rats (2, 12 and 24 months, respectively). There were significant spatial differences in the distribution of(More)
Adenosine plays a role in promoting sleep, an effect that is thought to be mediated in the basal forebrain. Adenosine levels vary in this region with prolonged wakefulness in a unique way. The basis for this is unknown. We examined, in rats, the activity of the major metabolic enzymes for adenosine - adenosine deaminase, adenosine kinase, ecto- and(More)
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's disease (PD) and cause both autosomal dominant familial and sporadic PD. Currently, the physiological and pathogenic activities of LRRK2 are poorly understood. To decipher the biological functions of LRRK2, including the genes and pathways modulated(More)
Previously, we showed that transient inhibition of TGF- β1 resulted in correction of key aspects of diabetes-induced CD34(+) cell dysfunction. In this report, we examine the effect of transient inhibition of plasminogen activator inhibitor-1 (PAI-1), a major gene target of TGF-β1 activation. Using gene array studies, we examined CD34(+) cells isolated from(More)
There are data to support the notion that adenosine (ADO), a neuromodulator in the CNS, is an important regulator of sleep homeostasis. It has been demonstrated that ADO agonists and antagonists strongly impact upon sleep. In addition, the level of adenosine varies across the sleep/wake cycle and increases following sleep deprivation. Adenosine deaminase(More)
  • 1