Learn More
1. The effects of exogenous ATP or adenosine on end-plate currents (e.p.cs; evoked by simultaneous action of a few hundred quanta of ACh) or on miniature e.p.cs (m.e.p.cs) were studied under voltage clamp conditions on frog sartorius muscle fibres. 2. ATP or adenosine (100 microM(-1) mM) reduced the e.p.c. amplitude but did not affect m.e.p.c. amplitude,(More)
Corelease of ATP with ACh from motor endings suggests a physiological role for ATP in synaptic transmission. We previously showed that, on skeletal muscle, ATP directly inhibited ACh release via presynaptic P2 receptors. The receptor identification (P2X or P2Y) and its transduction mechanism remained, however, unknown. In the present study using the(More)
The function of ATP-activated P2X3 receptors involved in pain sensation is modulated by desensitization, a phenomenon poorly understood. The present study used patch-clamp recording from cultured rat or mouse sensory neurons and kinetic modeling to clarify the properties of P2X3 receptor desensitization. Two types of desensitization were observed, a fast(More)
Neuronal nicotinic ACh receptors (nAChRs) readily desensitize in the presence of an agonist. However, when the agonist is applied for minutes, hours or days, it is unclear how extensive desensitization is, how long it persists after agonist removal and whether nAChRs consequently change their pharmacological properties. These issues were explored with(More)
Using whole-cell patch-clamp recording and intracellular Ca(2+) imaging of rat cultured DRG neurons, we studied the cross talk between GABA(A) and P2X receptors. A rapidly fading current was the main response to ATP, whereas GABA elicited slowly desensitizing inward currents. Coapplication of these agonists produced a total current much smaller than the(More)
The mechanisms through which changes in intracellular Ca2+ concentration ([Ca2+]i) might influence desensitization of neuronal nicotinic receptors (nAChRs) of rat chromaffin cells were investigated by simultaneous patch-clamp recording of membrane currents and confocal microscopy imaging of [Ca2+]i induced by nicotine. Increases in [Ca2+]i that were induced(More)
1. The possible role of intracellular Ca2+ levels ([Ca2+]i) in desensitization of nicotinic acetylcholine receptors (AChRs) was investigated in rat cultured chromaffin cells by use of combined whole-cell patch clamping and confocal laser scanning microscopy with the fluorescent dye fluo-3. 2. On cells held at -70 mV, pressure-application of nicotine(More)
Although calcitonin gene-related peptide (CGRP) modulates muscle-type nicotinic acetylcholine receptors (nAChRs) via intracellular second messenger-mediated phosphorylation, the action of this peptide on neuronal-type nAChRs remains unknown. Using neuronal nAChRs of rat chromaffin cells in vitro we studied the effect of CGRP, which is physiologically(More)
On nociceptive neurons, one important mechanism to generate pain signals is the activation of P2X(3) receptors, which are membrane proteins gated by extracellular ATP. In the presence of the agonist, P2X(3) receptors rapidly desensitize and then recover slowly. One unique property of P2X(3) receptors is the recovery acceleration by extracellular Ca(2+) that(More)
The mechanism responsible for the blocking action of mecamylamine on neuronal nicotinic acetylcholine receptors (nAChRs) was studied on rat isolated chromaffin cells recorded under whole-cell patch clamp. Mecamylamine strongly depressed (IC(50) = 0.34 microM) inward currents elicited by short pulses of nicotine, an effect slowly reversible on wash. The(More)