Elena Simona Bacaita

  • Citations Per Year
Learn More
1 Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, Prof. Dr. Docent Dimitrie Mangeron Road, No. 73, 700050 Iasi, Romania 2 Department of Physics, Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University of(More)
In this paper, we propose a new approach for the dynamics of drug delivery systems, assimilated to complex systems, an approach based on concepts like fractality, non-differentiability, and multiscale evolution. The main advantage of using these concepts is the possibility of eliminating the approximations used in the standard approach by replacing(More)
Inconsistencies of some standard quantum mechanical models (Madelung’s, de Broglie’s models) are eliminated assuming the micro particle movements on continuous, but non-differentiable curves (fractal curves). This hypothesis, named by us the fractal approximation of motion, will allow an unitary approach of the phenomena in quantum mechanics (separation of(More)
The study proposes modeling calcein release kinetics (considered as a hydrophilic drug model) from an interpenetrating network matrix of hydrogels, based on the combination of two polymers, of which chitosan is the most commonly used polymer. The release process is analyzed for different increasing time intervals, based on the evolution of the release(More)
In classical concepts, theoretical models are built assuming that the dynamics of the complex system’s stuctural units occur on continuous and differentiable motion variables. In reality, the dynamics of the natural complex systems are much more complicated. These difficulties can be overcome in a complementary approach, using the fractal concept and the(More)
  • 1