Elena Shumay

Learn More
The nonreceptor tyrosine kinase Src has been implicated in the switching of signaling of beta2-adrenergic receptors from adenylylcyclase coupling to the mitogen-activated protein kinase pathway. In the current work, we demonstrate that Src plays an active role in the agonist-induced desensitization of beta2-adrenergic receptors. Both the expression of(More)
The cyclic AMP-dependent kinase-anchoring proteins (AKAPs) function as scaffolds for a wide-range of protein-protein interactions. The 250-kDa AKAP known as gravin plays a central role in organizing G-protein-coupled receptors to the protein kinases and phosphatases that regulate receptor function in desensitization, resensitization, and sequestration.(More)
G-protein-coupled receptors and protein tyrosine kinases represent two prominent pathways for cellular signaling. As our knowledge of cell signaling pathways mediated by the superfamily of G-protein-coupled receptors and the smaller family of receptor tyrosine kinases expands, so does our appreciation of how these two major signaling platforms share(More)
The AKAP gravin is a scaffold for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta2-adrenergic receptors. Gravin binds to the receptor through well characterized protein-protein interactions. These interactions are facilitated approximately 1000-fold when gravin is anchored to the cytoplasmic leaflet of(More)
AKAPs (A-kinase anchoring proteins) are members of a diverse family of scaffold proteins that minimally possess a characteristic binding domain for the RI/RII regulatory subunit of protein kinase A and play critical roles in establishing spatial constraints for multivalent signalling assemblies. Especially for G-protein-coupled receptors, the AKAPs provide(More)
A-kinase anchoring proteins (AKAPs) define an expanding group of scaffold proteins that display a signature binding site for the RI/RII subunit of protein kinase A. AKAPs are multivalent and a subset of these scaffold proteins also display the ability to associate with the prototypic member of G-protein-coupled receptors, the beta(2)-adrenergic receptor.(More)
G-protein-coupled receptors (GPCRs) are membrane-embedded cell signaling devices transducing ligand binding to activation of heterotrimeric G-proteins, providing a paradigm for signaling for yeast and mammals alike. Probing the extent to which yeast GPCRs may couple to mammalian G-proteins has been problematic. In the current work, we explored conditions(More)
The counterregulation of catecholamine action by insulin includes insulin-stimulated sequestration of the beta(2)-adrenergic receptor. Herein we examined the signaling downstream of insulin receptor activation, focusing upon the role of 1-phosphatidylinositol 3-kinase and the serine-threonine protein kinase Akt (also known as protein kinase B) in the(More)
Insulin stimulates a rapid phosphorylation and sequestration of the beta(2)-adrenergic receptor. Analysis of the signaling downstream of the insulin receptor with enzyme inhibitors revealed roles for both phosphatidylinositol 3-kinase and pp60Src. Inhibition of Src with PP2, like the inhibition of phosphatidylinositol 3-kinase with LY294002(More)
To study the effects of HIV-1 Nef on CNS-derived cells in vivo, an expression system based on the murine neural stem cell line C17.2 was established. Stable expression of LAV-1(Bru)-nef in these cells induced a transformed phenotype and enhanced cell growth in soft agar. Further experiments using previously established nef-expressing human astrocytoma cell(More)