Learn More
The beneficial effect of a TiO2-based photocatalytic treatment on the indoor air purification of a swine farm has been evaluated in a trial performed in two identical mechanically ventilated traditional weaning units, with 391 animals lodged in each of them. One unit was used as reference, whereas the walls of the second unit (260 m2) were coated with ca.(More)
Peas in a pod: A highly aligned Au(np)@TiO2 photocatalyst was formed by self-organizing anodization of a Ti substrate followed by dewetting of a gold thin film. This leads to exactly one Au nanoparticle (np) per TiO2 nanocavity. Such arrays are highly efficient photocatalysts for hydrogen generation from ethanol.
A two-compartment Plexiglas cell has been set up and tested for separate hydrogen and oxygen production from photocatalytic water splitting on a thin TiO2 layer deposited by magnetron sputtering on a flat Ti electrode inserted between the two cell compartments.
Electrochemical anodization of low-concentration (0.02-0.2 at% Au) TiAu alloys in a fluoride electrolyte leads to self-organized TiO2 nanotubes that show a controllable, regular in situ decoration with elemental Au nanoclusters of ≈5 nm in diameter. The degree of self-decoration can be adjusted by the Au concentration in the alloy and the anodization time.(More)
Two series of doped titanium dioxide samples (S-TiO(2) and F-TiO(2)) were prepared by the sol-gel method in the presence of different amounts of dopant source (thiourea and NH(4)F, respectively), followed by calcination at 500, 600 or 700 °C, and characterised by BET, UV-vis absorption, XPS, HRTEM, XRD and EPR analyses. Reference undoped materials were(More)
Direct experimental evidence of the higher concentration of hydroxyl radicals generated on fluorinated titanium dioxide (F-TiO2) under irradiation was obtained by spin-trapping EPR measurements. The faster photoinduced bleaching of the azo dye Acid Red 1 (AR1) observed in the presence of F-TiO2 was explained by the high affinity of the azo double bond(More)
The effect of the crystalline phase of TiO(2) (anatase, rutile and brookite) on its photocatalytic activity in hydrogen production from methanol-water vapours has been investigated by testing a series of both home-made and commercial TiO(2) photocatalysts, either bare or surface-modified by deposition of a fixed amount, i.e. 1 wt%, of platinum as(More)
We introduce the use of pure molten ortho-phosphoric acid (o-H3PO4) as an electrolyte for self-organizing electrochemistry. This electrolyte allows for the formation of self-organized oxide architectures (one-dimensional nanotubes, nanochannels, nanopores) on metals such as tungsten that up to now were regarded as very difficult to grow self-ordered anodic(More)
The effects of gold nanoparticles deposited on titanium dioxide on the photocatalytic oxidative degradation of two organic substrates, i.e. formic acid and the azo dye Acid Red 1, and on the parallel O(2) reduction yielding hydrogen peroxide have been investigated under visible light irradiation. The method employed to reduce Au(iii) to metallic gold in the(More)
The effect of noble metal (Pt and Au) nanoparticle photodeposition on a series of NH4F-doped TiO2 photocatalysts calcined at 700 °C was investigated both in a thermodynamically down-hill reaction, i.e. the degradation of formic acid in aqueous suspension, and in an up-hill reaction, i.e. hydrogen production from methanol-water vapour mixtures. All(More)