Learn More
A number of pathogens of the upper respiratory tract express an unusual prokaryotic structure, phosphorylcholine (ChoP), on their cell surface. We tested the hypothesis that ChoP, also found on host membrane lipids in the form of phosphatidylcholine, acts so as to decrease killing by antimicrobial peptides that target differences between bacterial and host(More)
Humans are colonized by a large and diverse bacterial flora (the microbiota) essential for the development of the gut immune system. A broader role for the microbiota as a major modulator of systemic immunity has been proposed; however, evidence and a mechanism for this role have remained elusive. We show that the microbiota are a source of peptidoglycan(More)
Innate immunity serves as a first line defense in vertebrate organisms by providing an initial barrier to microorganisms and triggering antigen-specific responses. Antimicrobial peptides are thought to be effectors of innate immunity through their antibiotic activity and direct killing of microorganisms. Evidence to support this hypothesis in vertebrates is(More)
The epithelial surfaces of the upper respiratory tract are continuously exposed to a wide variety of commensal microorganisms. In addition to acting as a physical barrier, epithelial cells respond to specific microbial products with the generation of signals, such as cytokines, that trigger inflammation. Because they are common components of the(More)
HIV-1 reservoirs preclude virus eradication in patients receiving highly active antiretroviral therapy (HAART). The best characterized reservoir is a small, difficult-to-quantify pool of resting memory CD4(+) T cells carrying latent but replication-competent viral genomes. Because strategies targeting this latent reservoir are now being tested in clinical(More)
The most common form of the childhood neurodegenerative disease late infantile neuronal ceroid lipofuscinosis (also called Batten disease) is caused by deficiency of the soluble lysosomal enzyme tripeptidyl peptidase 1 (TPP1) resulting from mutations in the TPP1 gene. We tested whether TPP1 gene transfer to the ependyma, the epithelial lining of the brain(More)
Nasopharyngeal colonization is the first step in the interaction between Streptococcus pneumoniae (the pneumococcus) and its human host. Factors that contribute to clearance of colonization are likely to affect the spread of the pneumococcus and the rate of pneumococcal disease in the population. To identify host and bacterial factors contributing to this(More)
Toll-like receptors (TLRs) have been implicated in the regulation of host responses to microbial Ags. This study characterizes the role of TLR4 in the innate immune response to intrapulmonary administration of Haemophilus influenzae in the mouse. Two different strains of mice efficiently cleared aerosolized H. influenzae concurrent with a brisk elaboration(More)
Since mucosal surfaces may be simultaneously colonized by multiple species, the success of an organism may be determined by its ability to compete with co-inhabitants of its niche. To explore the contribution of host factors to polymicrobial competition, a murine model was used to study the initiation of colonization by Haemophilus influenzae and(More)
Opacity-associated protein A (OapA), which is responsible for the transparent-colony phenotype of Haemophilus influenzae, has been implicated in the colonization of the nasopharynx in an infant rat model of carriage. In this report, we show that OapA mediates attachment to Chang epithelial cells examined by using genetically defined type b and nontypeable(More)