Learn More
Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3'UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally(More)
The 5'-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using(More)
Site-directed spin labeling (SDSL) is widely applied for structural studies of biopolymers by electron paramagnetic resonance (EPR). However, SDSL of long RNA sequences still remains a challenging task. Here, we propose a novel SDSL approach potentially suitable for long natural RNAs, which is based on the attachment of a linker containing an aliphatic(More)
Nanoscale distance measurements by pulse dipolar Electron paramagnetic resonance (EPR) spectroscopy allow new insights into the structure and dynamics of complex biopolymers. EPR detection requires site directed spin labeling (SDSL) of biomolecule(s), which remained challenging for long RNAs up-to-date. Here, we demonstrate that novel(More)
The possible involvement of 18S rRNA fragment 1638–1650, including basements of the helices h44 and h28, as well as nucleotides of the ribosomal decoding site in the cap-independent mode of the initiation of the translation of plant ribosomes is studied. This rRNA fragment is shown to be accessible for complementary interactions in the 40S ribosomal(More)
  • 1