Elena Rampazzo

Learn More
One of the biggest challenges in tumour research is the possibility to reprogram cancer cells towards less aggressive phenotypes. In this study, we reprogrammed primary Glioblastoma multiforme (GBM)-derived cells towards a more differentiated and less oncogenic phenotype by activating the Wnt pathway in a hypoxic microenvironment. Hypoxia usually correlates(More)
Glioblastoma multiforme (GBM) is the most common brain tumour, characterized by a central and partially necrotic (i.e., hypoxic) core enriched in cancer stem cells (CSCs). We previously showed that the most hypoxic and immature (i.e., CSCs) GBM cells were resistant to Temozolomide (TMZ) in vitro, owing to a particularly high expression of(More)
The molecular determinants of malignant cell behaviours in breast cancer remain only partially understood. Here we show that SHARP1 (also known as BHLHE41 or DEC2) is a crucial regulator of the invasive and metastatic phenotype in triple-negative breast cancer (TNBC), one of the most aggressive types of breast cancer. SHARP1 is regulated by the p63(More)
In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at(More)
Tumors arising in the central nervous system are thought to originate from a sub-population of cells named cancer stem cells (CSCs) or tumor initiating cells (TICs) that possess an immature phenotype, combined with self-renewal and chemotherapy resistance capacity. Moreover, in the last years, these cells have been identified in particular brain tumor(More)
We recently described a three-layer concentric model of a glioblastoma (GBM) related to a specific distribution of molecular and phenotypic characteristics driven by the intratumoral hypoxic gradient in which the cancer stem cells niche is located in the hypoxic necrotic core of the tumour. The purpose of this study was to investigate the relationship(More)
BACKGROUND Glioblastoma multiforme (GBM) is one of most common and still poorly treated primary brain tumors. In search for new therapeutic approaches, Bone Morphogenetic Proteins (BMPs) induce astroglial commitment in GBM-derived cells in vitro. However, we recently suggested that hypoxia, which is characteristic of the brain niche where GBM reside,(More)
Pancreatic adenocarcinoma, one of the worst malignancies of the exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. This condition is usually driven by oncogenic KRAS point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and unbalanced expression of(More)
Medulloblastoma is the most common malignant brain tumor of childhood. Although survival has slowly increased in the past years, the prognosis of these patients remains unfavourable. In this context, it has been recently shown that the intracellular signaling pathways activated during embryonic cerebellar development are deregulated in MDB. One of the most(More)
5-aminolevulinic acid (5-ALA) introduction in the surgical management of Glioblastoma (GBM) enables the intra-operatively identification of cancer cells in the mass by means of fluorescence. Here, we analyzed the phenotype of GBM cells isolated from distinct tumour areas determined by 5-ALA (tumour core, 5-ALA intense and vague layers) and the potency of(More)
  • 1