Learn More
Reaction of [{Au(C6X5)2}Ag]n (X = Cl, F) with the crown thioethers 1,4,7-trithiacyclononane ([9]aneS3), 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4), or 1,4,7,10,13,16,19,22-octathiacyclotetracosane ([24]aneS8) affords a series of heteronuclear Au(I)/Ag(I) compounds of stoichiometry [{Au(C6X5)2}Ag(L)x] (L = [9]aneS3, x = 2 (1, 4); L = [14]aneS4, x = 1 (2,(More)
The reaction of 1,4-bis(2'-pyridylethynyl)benzene (L) with [{Au(C6X5)2}Tl]n affords new heterometallic Au(I)/Tl(I) complexes with different stoichiometries, structural arrangements and optical properties depending on the halogens present in the aryl group. The chlorinated derivative [{Au(C6Cl5)2}Tl(L)]n () displays polymeric chains built thanks to(More)
The polymeric Au/Tl compounds [{Au(C6X5)2}Tl]n (X = Cl, F) react with the crown thioethers 1,4,7-trithiacyclononane ([9]aneS3), 1,5,8,11-tetrathiacyclotetradecane ([14]aneS4), and 1,4,7,10,13,16,19,22-octathiacyclotetracosane ([24]aneS8) in an appropriate molar ratio to afford [{Au(C6X5)2}Tl(L)]2 [L = [9]aneS3, X = Cl (1), F (4); L = [14]aneS4, X = Cl (2),(More)
The reactions of 4(dimethylamino)pyridine (DMAP) with the gold(I) precursors [AuR(tht)] (R = C6F5, C6Cl2F3 or C6Cl5; tht = tetrahydrothiophene) lead to complexes [AuR(DMAP)] (R = C6F5 (1), C6Cl2F3 (2) or C6Cl5 (3)). X-ray diffraction studies of the complexes reveal the presence of discrete molecules in which aurophilic contacts are absent, with π-stacking(More)
Reaction of [Au(C6F5)(tht)] (tht = tetrahydrothiophene) with 2,2':6',2"-terpyridine (terpy) leads to complex [Au(C6F5)(η(1)-terpy)] (1). The chemical oxidation of complex (1) with 2 equiv of [N(C6H4Br-4)3](PF6) or using electrosynthetic techniques affords the Au(III) complex [Au(C6F5)(η(3)-terpy)](PF6)2 (2). The X-ray diffraction study of complex 2 reveals(More)
  • 1