Elena Gottardini

Learn More
The discrimination and classification of allergy-relevant pollen was studied for the first time by mid-infrared Fourier transform infrared (FT-IR) microspectroscopy together with unsupervised and supervised multivariate statistical methods. Pollen samples of 11 different taxa were collected, whose outdoor air concentration during the flowering time is(More)
A fully randomized sampling design was adopted to test whether pollen viability of Austrian pine (Pinus nigra Arnold) was impacted by NO(2) pollution. Spatial strata (500500 m each) with high (41.9-44.6 microg m(-3)) and low (15.4-21.0 microg m(-3)) NO(2) were selected from a defined population in a small area (236.5 km(2), <200 m range in elevation) in(More)
Nine short-term independent studies were carried out with two M-PEA units on several plant species differing in their functional traits (woody evergreen, woody deciduous, herbaceous) and exposed to different kind of abiotic stress (drought, salt, ozone, UV radiation). Aim of the study is to check the consistency of plant responses, assessed through three(More)
We investigated the response of epiphytic lichens to air pollution, against the background of other ecological predictors in a prealpine heterogeneous area, using Non-Parametric Multiplicative Regression (NPMR). The best NPMR model for total lichen diversity according to N environmental predictors at tree level has a cross R(2)=0.709. It includes 10(More)
Specific visible foliar injuries were demonstrated to occur on plants of Viburnum lantana L. (wayfaring tree) when exposed to ozone in open-top chamber experiments. However, although evidence of visible injury was reported even for native plants, no comprehensive testing has been carried out under real field conditions. Thus, the extent to which V. lantana(More)
Few integration steps (adding low-cost ozone measurements, link to existing conventional monitors, joint data processing) transformed the traditional forest monitoring network into a multifunctional infrastructure producing information relevant for estimating risk to vegetation and human health Traditionally, forest monitoring networks have been designed to(More)
A 5-year project was carried out over the period 2007-2011 to estimate the potential and actual ozone effect on forests in Trentino, Northern Italy (6207 km2) (Ozone EFFORT). The objective was to provide explicit answers to three main questions: (i) is there a potential risk placed by ozone to vegetation? (ii) are there specific ozone symptoms on(More)
Introduction Because its oxidative power, tropospheric ozone is considered, on a large scale, the most harmful pollutant to vegetation (Ashmore, 2005). The exceedances of critical levels set to protect vegetation are quite high and widespread, so that large parts of crops and forests in Europe are exposed to potentially harmful levels of ozone (EEA, 2009).(More)
A stratified random sampling design was adopted to contrast sites with different ozone exposure levels (≤ 18,000 and >18,000 μg m(-3) h) in order to define whether and to what extent a relationship exists between potential risk (estimated by exposure to ozone) and the response of Viburnum lantana L. in terms of foliar symptoms. The study was designed over a(More)
A rapid, empirical method is described for estimating weekly AOT40 from ozone concentrations measured with passive samplers at forest sites. The method is based on linear regression and was developed after three years of measurements in Trentino (northern Italy). It was tested against an independent set of data from passive sampler sites across Italy. It(More)