Elena Garces

Learn More
Decomposing an input image into its intrinsic shading and reflectance components is a long-standing ill-posed problem. We present a novel algorithm that requires no user strokes and works on a single image. Based on simple assumptions about its reflectance and luminance, we first find clusters of similar reflectance in the image, and build a linear system(More)
This paper presents a method for measuring the similarity in style between two pieces of vector art, independent of content. Similarity is measured by the differences between four types of features: color, shading, texture, and stroke. Feature weightings are learned from crowdsourced experiments. This perceptual similarity enables style-based search. Using(More)
We present a method to decompose a <i>video</i> into its intrinsic components of reflectance and shading, plus a number of related example applications in video editing such as segmentation, stylization, material editing, recolorization and color transfer. Intrinsic decomposition is an ill-posed problem, which becomes even more challenging in the case of(More)
We present a method to automatically decompose a light field into its intrinsic shading and albedo components. Contrary to previous work targeted to 2D single images and videos, a light field is a 4D structure that captures non-integrated incoming radiance over a discrete angular domain. This higher dimensionality of the problem renders previous(More)
Searching by style in illustration data sets is a particular problem in Information Retrieval which has received little attention so far. One of its main problems is that the perception of style is highly subjective, which makes labeling styles a very difficult task. Despite being difficult to predict computationally, certain properties such as(More)
Recent advances in the field of computational light transport have made it possible to solve previously unsolvable problems thanks to incorporating new devices and techniques. One of these problems is the decomposition of the illumination into its local and global components in real scenes. Previous work has managed to perform such a decomposition by(More)
The field of image classification has shown an outstanding success thanks to the development of deep learning techniques. Despite the great performance obtained, most of the work has focused on natural images ignoring other domains like artistic depictions. In this paper, we use transfer learning techniques to propose a new classification network with(More)
  • 1