Elena García-Giménez

Learn More
We find that moderate cationic selectivity of the general bacterial porin OmpF in sodium and potassium chloride solutions is inversed to anionic selectivity in concentrated solutions of barium, calcium, nickel, and magnesium chlorides. To understand the origin of this phenomenon, we consider several factors, which include the binding of divalent cations,(More)
We report pH-dependent electrochemical rectification in a protein ion channel (the bacterial porin OmpF) reconstituted on a planar phospholipid membrane. The measurements performed at single-channel level show that the electric current is controlled by the protein fixed charge and it can be tuned by adjusting the local pH. Under highly asymmetric pH(More)
In contrast to the highly-selective channels of neurophysiology employing mostly the exclusion mechanism, different factors account for the selectivity of large channels. Elucidation of these factors is essential for understanding the permeation mechanisms in ion channels and their regulation in vivo. The interaction between divalent cations and a protein(More)
Measurement of unitary conductance is a fundamental step in the characterization of a protein ion channel permeabilizing a membrane. We study here the effect of salts of divalent cations on the OmpF channel conductance with a particular emphasis in dissecting the role of the electrolyte itself, the role of the counterion accumulation induced by the protein(More)
We report charge inversion within a nanoscopic biological protein ion channel in salts of multivalent ions. The presence of positive divalent and trivalent counterions reverses the cationic selectivity of the OmpF channel, a general diffusion porin located in the outer membrane of E. coli. We discuss the conditions under which charge inversion can be(More)
Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH). We extend here the characterization of the OmpF porin, a wide channel of the outer(More)
Porins are channel-forming proteins that are located in the outer membranes (OM) of Gram-negative bacteria and allow the influx of hydrophilic nutrients and the extrusion of waste products. The fine regulation of the ion transport through these wide channels could play an important role in the survival of the bacteria in acidic media. We investigate here(More)
AIM To update the existing knowledge about attention deficit hyperactivity disorder (ADHD) in adults, with special interest given to aspects concerning epidemiology, diagnosis, progression and treatment. DEVELOPMENT Acknowledging the fact that ADHD can persist into adulthood is a relatively recent development. Nevertheless, over the last few years(More)
The preference of large protein ion channels for cations or anions is mainly determined by the electrostatic interactions of mobile ions with charged residues of the protein. Here we discuss the widely spread paradigm that the charges determining the channel selectivity are only those that can be considered solvent-accessible because of their location near(More)
The ion selectivity of a channel can be quantified in several ways by using different experimental protocols. A wide, mesoscopic channel, the OmpF porin of the outer membrane of E. coli, serves as a case study for comparing and analysing several measures of the channel cation-anion permeability in chlorides of alkali metals (LiCl, NaCl, KCl, CsCl). We show(More)
  • 1