Elena G. Plotnikova

Learn More
A chemoorganotrophic, moderately halophilic bacterium (strain SMB35) has been isolated from a naphthalene-utilizing microbial community obtained from salt mines (Perm region of Russia). Strain SMB35 grows in a wide salinity range, 0.5 to 30% (wt/vol) NaCl. Cells are gram-negative rods motile by means of a single polar flagellum. The predominant fatty acids(More)
We have cloned and characterized novel oxygenolytic ortho-dehalogenation (ohb) genes from 2-chlorobenzoate (2-CBA)- and 2,4-dichlorobenzoate (2,4-dCBA)-degrading Pseudomonas aeruginosa 142. Among 3,700 Escherichia coli recombinants, two clones, DH5alphaF'(pOD22) and DH5alphaF'(pOD33), converted 2-CBA to catechol and 2,4-dCBA and 2,5-dCBA to(More)
Microorganisms capable of degrading monocyclic and polycyclic aromatic hydrocarbons and several chlorinated aromatic compounds were isolated from soils polluted with industrial waste from chemical plants. They were identified as representatives of the genera Pseudomonas, Flavobacterium, Alcaligenes, Rhodococcus, Microbacterium, Cellulomonas, Arthrobacter,(More)
A halotolerant bacterium, strain SMB34T, was isolated from a naphthalene-utilizing bacterial consortium obtained from primitive technogeneous soil (Verkhnekamsk salt deposit, Perm region, Russia) by enrichment procedure. The strain itself was unable to degrade naphthalene and grew at NaCl concentrations up to 11% (w/v). The 16S rRNA-based phylogenetic(More)
During cultivation in a liquid medium, the bacterium Rhodococcus opacus 1G was capable of growing on phenol at a concentration of up to 0.75 g/l. Immobilization of Rhodococcus opacus 1G had a positive effect on cell growth in the presence of phenol at high concentrations. The substrate at concentrations of 1.0 and 1.5 g/l was completely utilized over 24 and(More)
Fifteen bacterial strains capable of utilizing naphthalene, phenanthrene, and biphenyl as the sole sources of carbon and energy were isolated from soils and bottom sediments contaminated with waste products generated by chemical- and salt-producing plants. Based on cultural, morphological, and chemotaxonomic characteristics, ten of these strains were(More)
The fsbA gene controlling the first step of 4-chlorobenzoic acid (4CBA) metabolism in the Gram-positive soil bacterium Arthrobacter globiformis KZT1 has been cloned and analysed in Escherichia coli. The E. coli minicells analysis showed that a polypeptide(s) with Mr = 58 kDa (and/or Mr = 32 kDa) can be the fcbA product(s). Despite the gene dose(More)
This work deals with the taxonomic study of orange-pigmented bacteria isolated from permafrost sediments, rice plots, and soils contaminated with wastes from the chemical and salt industries that were assigned to the genus Brevibacterium on the basis of phenotypic characteristics, as well as of some strains described previously as Brevibacterium linens. The(More)
249 The Verkhnekamsk deposit is an area of massive development of salt bearing sediments with strata of rock salt and sylvinite, which is located within the Pre Urals depression and is bounded from the west and east by the East European craton and the West Ural Fold and Thrust zone, respectively [1]. In the course of mining and development of the salts,(More)
The strains of Arthrobacter globiformis KZT1, Corynebacterium sepedonicum KZ4 and Pseudomonas cepacia KZ2 capable of early dehalogenation and complete oxidation of 4-chloro-, 2,4-dichloro-and 2-chlorobenzoic acids, respectively, have been analyzed for the origin of the genetic control of degradation. The occurrence and molecular sizes of plasmids in all the(More)