Elena E Bykova

Learn More
Metallic osmium (Os) is one of the most exceptional elemental materials, having, at ambient pressure, the highest known density and one of the highest cohesive energies and melting temperatures. It is also very incompressible, but its high-pressure behaviour is not well understood because it has been studied so far only at pressures below 75 gigapascals.(More)
Boron, discovered as an element in 1808 and produced in pure form in 1909, has still remained the last elemental material, having stable natural isotopes, with the ground state crystal phase to be unknown. It has been a subject of long-standing controversy, if α-B or β-B is the thermodynamically stable phase at ambient pressure and temperature. In the(More)
The diamond anvil cell (DAC) technique coupled with laser heating is a major method for studying materials statically at multimegabar pressures and at high temperatures. Recent progress in experimental techniques, especially in high-pressure single crystal X-ray diffraction, requires portable laser heating systems which are able to heat and move the DAC(More)
Under high pressures the hydrogen bonds were predicted to transform from a highly asymmetric soft O-H···O to a symmetric rigid configuration in which the proton lies midway between the two oxygen atoms. Despite four decades of research on hydroxyl containing compounds, pressure induced hydrogen bond symmetrization remains elusive. Following single crystal(More)
Although chemically very simple, Fe2O3 is known to undergo a series of enigmatic structural, electronic and magnetic transformations at high pressures and high temperatures. So far, these transformations have neither been correctly described nor understood because of the lack of structural data. Here we report a systematic investigation of the behaviour of(More)
An oxide semiconductor (perovskite-type Mn2 O3 ) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2 O3 described is much stronger(More)
A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these(More)
Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data(More)
In various shocked meteorites, low-pressure silica polymorph α-cristobalite is commonly found in close spatial relation with the densest known SiO2 polymorph seifertite, which is stable above ∼80 GPa. We demonstrate that under hydrostatic pressure α-cristobalite remains untransformed up to at least 15 GPa. In quasi-hydrostatic experiments, above 11 GPa(More)
We report on the experiments on the interaction of gigawatt femtosecond laser pulses with suspended millimeter-sized water droplets. The transparent droplets experienced laser-induced breakdown and explosive boiling up and emitted a broadband radiation. This radiation covers the spectral range from 450 to 1100 nm and consists of the spectrum of laser pulse(More)