Elena Dordoni

Learn More
Transcatheter aortic valve replacement (TAVR) represents an established recent technology in a high risk patient base. To better understand TAVR performance, a fluid–structure interaction (FSI) model of a self-expandable transcatheter aortic valve was proposed. After an in vitro durability experiment was done to test the valve, the FSI model was built to(More)
Fatigue resistance of Nitinol stents implanted into femoro-popliteal arteries is a critical issue for the particular biomechanical environment of this district. Hip and knee joint movements due to the cyclic daily activity expose the superficial femoral artery (SFA), and therefore the implanted stents, to quite large and cyclic deformations influencing(More)
The aim of this work is to introduce a methodology to study the stent expansion and the subsequent deformation of the arterial wall towards the outside direction in order arterial lesion to be rehabilitated and blood flow to be restored. More specifically, a coronary artery and the plaque are reconstructed using intravascular ultrasound and biplane(More)
Fatigue resistance of Nitinol peripheral stents implanted into atheroscelorotic femoro-popliteal arteries is a critical issue due to the particular biomechanical environment of this district. Hip and knee joint movements associated with patient’ daily activities expose the superficial femoral artery, and therefore the implanted stents, to large and cyclic(More)
Nickel-Titanium (NiTi) peripheral stents are commonly used for the treatment of diseased femoropopliteal arteries (FPA). However, cyclic deformations of the vessel, induced by limb movements affect device performance and fatigue failure may occur. Stent strut fracture has been described in the literature, and is implicated as a potential causative factor in(More)
NiTi (nickel-titanium) stents are nowadays commonly used for the percutaneous treatment of peripheral arterial disease. However, their effectiveness is still debated in the clinical field. In fact a peculiar cyclic biomechanical environment is created before and after stent implantation, with the risk of device fatigue failure. An accurate study of the(More)
  • 1