Elena Bianca Adamo

Learn More
Brain injury was induced by intraperitoneal administration of kainic acid (KA, 10 mg/kg). Animals were randomized to receive either IRFI 042 (20 mg/kg i.p.), a lipid peroxidation inhibitor, or its vehicle (NaCl 0.9% DMSO 10% 1 ml/kg i.p.) 30 min before KA administration. A first set of animals was sacrificed 6 h after KA injection to measure malondialdehyde(More)
Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following(More)
Benign prostatic hyperplasia (BPH) is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation,(More)
Genistein aglycone, one of the soy isoflavones, has been reported to be beneficial in the treatment of menopausal vasomotor symptoms, osteoporosis, and cardiovascular diseases, as well as in a variety of cancers. However, issues of potential harm on thyroid function resulting from soy isoflavones consumption have been raised. Much of the evidence for the(More)
In rat duodenal segments in vitro, electrical field stimulation induced a TTX-sensitive relaxation in the presence of atropine and guanethidine. A correlation between the amplitude of the evoked response and stimulus frequency was observed. Opioid peptides DAGO, DPDPE and DYN caused a dose-dependent increase in the amplitude of the response to EFS. Naloxone(More)
Isolated rat duodenum shows spontaneous mechanical and electrical activities. Mechanical activity consists in changes both in endoluminal pressure and in isometric tension. Electrical activity is characterized by slow waves with superimposed bursts. This spontaneous activity is tetrodotoxin (TTX) resistant and therefore it is myogenic in origin. Indeed, TTX(More)
  • 1