Elena A Morachevskaya

Learn More
Ion transport in various tissues can be regulated by the cortical actin cytoskeleton. Specifically, involvement of actin dynamics in the regulation of nonvoltage-gated sodium channels has been shown. Herein, inside-out patch clamp experiments were performed to study the effect of the heterodimeric actin capping protein CapZ on sodium channel regulation in(More)
This study focuses on the functional role of cellular cholesterol in the regulation of mechanosensitive cation channels activated by stretch in human leukaemia K562 cells. The patch-clamp method was employed to examine the effect of methyl-beta-cyclodextrin (MbetaCD), a synthetic cholesterol-sequestering agent, on stretch-activated single currents. We found(More)
Compelling evidence shows that intracellular free magnesium [Mg(2+)](i) may be a critical regulator of cell activity in eukaryotes. However, membrane transport mechanisms mediating Mg(2+) influx in mammalian cells are poorly understood. Here, we show that mechanosensitive (MS) cationic channels activated by stretch are permeable for Mg(2+) ions at different(More)
Membrane cholesterol and lipid rafts are implicated in various signalling processes involving actin rearrangement in living cells. However, functional link between raft integrity and organisation of cytoskeleton remains unclear. We have compared the effect of cholesterol sequestration on F-actin structures in normal and transformed fibroblasts in which(More)
Mechanosensitive channels in various eucaryotic cells are thought to be functionally and structurally coupled to the cortical cytoskeleton. However, the results of electrophysiological studies are rather controversial and the functional impact of cytoskeleton assembly-disassembly on stretch-activated channel properties remains unclear. Here, the possible(More)
The major players in the processes of cellular mechanotransduction are considered to be mechanosensitive (MS) or mechano-gated ion channels. Non-selective Ca(2+)-permeable channels, whose activity is directly controlled by membrane stretch (stretch-activated channels, SACs) are ubiquitously present in mammalian cells of different origin. Ca(2+) entry(More)
Cholesterol is a critical regulator of lipid bilayer dynamics and plasma membrane organization in eukaryotes. A variety of ion channels have been shown to be modulated by cellular cholesterol and partition into cholesterol-enriched membrane rafts. However, very little is known about functional role of membrane cholesterol in regulation of mechanically gated(More)
Cholesterol is a major lipid component of the plasma membrane that plays an important role in various signaling processes in mammalian cells. Our study is focused on the role of membrane cholesterol in the organization and dynamics of actin cytoskeleton. Experiments were performed on cultured transformed cells characterized by a poorly developed actin(More)
The role of G proteins in regulation of non-voltage-gated Na+ channels in human myeloid leukemia K562 cells was studied by inside-out patch-clamp method. Na+ channels were activated by non-hydrolyzable analog of guanosine triphosphate (GTP), GTPgammaS, known to activate both heterotrimeric and small G proteins. Channel activity was not affected by aluminum(More)
126 The relationship between the plasma membrane and actin cytoskeleton can ensure the integration of different signaling pathways from the cell surface to the cytoplasmic structures. It is known that the effect of a number of hormones and growth factors (includd ing the epidermal growth factor, EGF) involves rearr rangements of microfilaments [1]. It is(More)