Learn More
Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and(More)
BACKGROUND The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial(More)
Vitamin A deficiency is a serious global health problem that can be alleviated by improved nutrition. Development of cereal crops with increased provitamin A carotenoids can provide a sustainable solution to eliminating vitamin A deficiency worldwide. Maize is a model for cereals and a major staple carbohydrate source. Here, we discuss maize carotenogenesis(More)
Closing gaps in our current knowledge about biological pathways is a fundamental challenge. The development of novel computational methods along with high-throughput experimental data carries the promise to help in the challenge. We present an algorithm called MORPH (for module-guided ranking of candidate pathway genes) for revealing unknown genes in(More)
Plants synthesize carotenoids, which are essential for plant development and survival. These metabolites also serve as essential nutrients for human health. The biosynthetic pathway for all plant carotenoids occurs in chloroplasts and other plastids and requires 15-cis-ζ-carotene isomerase (Z-ISO). It was not known whether Z-ISO catalyzes isomerization(More)
Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid(More)
New technologies are redefining how plant biology will meet societal challenges in health, nutrition, agriculture, and energy. Rapid and inexpensive genome and transcriptome sequencing is being exploited to discover biochemical pathways that provide tools needed for synthetic biology in both plant and microbial systems. Metabolite detection at the cellular(More)
  • 1