Learn More
Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and(More)
Enhancement of the carotenoid biosynthetic pathway in food crops benefits human health and adds commercial value of natural food colorants. However, predictable metabolic engineering or breeding is limited by the incomplete understanding of endogenous pathway regulation, including rate-controlling steps and timing of expression in carotenogenic tissues. The(More)
Abscisic acid (ABA) plays a vital role in mediating abiotic stress responses in plants. De novo ABA biosynthesis involves cleavage of carotenoid precursors by 9-cis-epoxycarotenoid dioxygenase (NCED), which is rate controlling in leaves and roots; however, additional bottlenecks in roots must be overcome, such as biosynthesis of upstream carotenoid(More)
Metabolic engineering of plant carotenoids in food crops has been a recent focus for improving human health. Pathway manipulation is predicated on comprehensive knowledge of this biosynthetic pathway, which has been extensively studied. However, there existed the possibility of an additional biosynthetic step thought to be dispensable because it could be(More)
Vitamin A deficiency, a global health burden, can be alleviated through provitamin A carotenoid biofortification of major crop staples such as maize (Zea mays) and other grasses in the Poaceae. If regulation of carotenoid biosynthesis was better understood, enhancement could be controlled by limiting beta-carotene hydroxylation to compounds with lower or no(More)
Carotenoids are essential for photosynthesis and photoprotection; they also serve as precursors to signaling molecules that influence plant development and biotic/abiotic stress responses. With potential to improve plant yield and nutritional quality, carotenoids are targets for metabolic breeding/engineering, particularly in the Poaceae (grass family),(More)
Carotenoids and their apocarotenoid derivatives play essential physiological and developmental roles and provide plants tolerance to a variety of stresses. Carotenoid cleavage dioxygenases mediate the degradation of carotenoids to apocarotenoids. A better understanding of biosynthesis vs. degradation could be useful for controlling carotenoid levels leading(More)
BACKGROUND The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial(More)
Vitamin A deficiency is a serious global health problem that can be alleviated by improved nutrition. Development of cereal crops with increased provitamin A carotenoids can provide a sustainable solution to eliminating vitamin A deficiency worldwide. Maize is a model for cereals and a major staple carbohydrate source. Here, we discuss maize carotenogenesis(More)