Eleanor A. Blakely

Learn More
Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear(More)
Relatively low doses of space radiation have been correlated with an increased incidence and earlier appearance of cataracts in space travelers. The lens is a radiosensitive organ of the body with a very obvious late end point of radiation damage--cataract. However, many molecular changes occur in the lens soon after radiation exposure and long before the(More)
Synchrotron radiation-based Fourier transform infrared spectromicroscopy is a newly emerging analytical tool capable of monitoring the biochemistry within an individual living mammalian cell in real time. This unique technique provides infrared (IR) spectra, hence chemical information, with high signal to noise at spatial resolutions as fine as 3-10 microm.(More)
HJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome. We measured(More)
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from(More)
The inactivation of cells resulting in lethal or aberrant effects by charged particles is of growing interest. Charged particles at extremely high LET are capable of completely eliminating cell-type and cell-line differences in repair capacity. It is still not clear however whether the repair systems are inactivated, or merely that heavy-ion lesions are(More)
In track segment experiments, the inactivation of different mammalian cells by heavy charged particles between helium and uranium in the energy range between 1 and 1000 MeV/u has been measured at the heavy ion accelerator Unilac, Darmstadt, the Tandem Van de Graaf, Heidelberg, and the Bevalac, Berkeley. The inactivation cross sections calculated from the(More)
One of the more interesting observations made in early studies with heavy ions is that the cross-section of the radiosensitive area in mammalian cells increases with LET of HZE particles. It is not certain, however, whether this radiosensitive area is limited to the nuclear area of cells. The successful acceleration of krypton ions to 8.5 MeV/amu at the(More)
We have been using the "premature chromosome condensation (PCC)" technique to investigate chromosomal breakage, rejoining and misrepair induced by accelerated heavy ions. With the presentation of new Fe experiments, we now review the available PCC data to summarize our current understanding of the action of high velocity charged particles on mammalian(More)