Elazar Zelzer

Learn More
Mononuclear phagocytes, including monocytes, macrophages, and dendritic cells, contribute to tissue integrity as well as to innate and adaptive immune defense. Emerging evidence for labor division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional(More)
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis during development, but little is known about the factors that control its expression. We provide the first example of tissue specific loss of VEGF expression as a result of targeting a single gene, Cbfa1/Runx2. During endochondral bone formation, invasion of blood vessels(More)
Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glut1 and Glut3, several glycolytic enzymes, nitric oxide synthase, tyrosine hydroxylase, erythropoietin and vascular endothelial growth factor (VEGF). Induction of these genes is mediated by a common basic helix-loop-helix-PAS(More)
The formation of the musculoskeletal system represents an intricate process of tissue assembly involving heterotypic inductive interactions between tendons, muscles and cartilage. An essential component of all musculoskeletal systems is the anchoring of the force-generating muscles to the solid support of the organism: the skeleton in vertebrates and the(More)
To directly examine the role of vascular endothelial growth factor (VEGFA) in cartilage development, we conditionally knocked out Vegfa in chondrocytes, using the Col2a1 promoter to drive expression of Cre recombinase. Our study of Vegfa conditional knockout (CKO) mice provides new in-vivo evidence for two important functions of VEGFA in bone formation.(More)
During embryogenesis, organ development is dependent upon maintaining appropriate progenitor cell commitment. Synovial joints develop from a pool of progenitor cells that differentiate into various cell types constituting the mature joint. The involvement of the musculature in joint formation has long been recognized. However, the mechanism by which the(More)
Angiogenesis is an essential component of skeletal development and VEGF signaling plays an important if not pivotal role in this process. Previous attempts to examine the roles of VEGF in vivo have been largely unsuccessful because deletion of even one VEGF allele leads to embryonic lethality before skeletal development is initiated. The availability of(More)
During early stages of limb development, the vasculature is subjected to extensive remodeling that leaves the prechondrogenic condensation avascular and, as we demonstrate hereafter, hypoxic. Numerous studies on a variety of cell types have reported that hypoxia has an inhibitory effect on cell differentiation. In order to investigate the mechanism that(More)
Studies of bone morphogenesis have identified a large number of critical molecules and regulatory pathways. One of these molecules is vascular endothelial growth factor, VEGF. Several studies suggest that not only is this regulator of angiogenesis important in mediating interactions between the developing bone and the vasculature, but it also has a key role(More)
During the assembly of the musculoskeletal system, bone ridges provide a stable anchoring point and stress dissipation for the attachment of muscles via tendons to the skeleton. In this study, we investigate the development of the deltoid tuberosity as a model for bone ridge formation. We show that the deltoid tuberosity develops through endochondral(More)