Elanor E. Schoomer

Learn More
The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the(More)
Testosterone (T) secreted in short pulses several times each day is essential for the maintenance of male sex behavior (MSB) in mammals. Blood T concentrations are relatively low during inter-pulse intervals. Assessment of androgenic influences on MSB of rodents has, with very few exceptions, involved either injections of pure or esterified hormones(More)
In most mammalian species, reduced androgen availability is associated with marked reductions in male sexuality; conversely, androgen replacement in castrated males restores sex behavior within a few weeks. Testosterone (T) pulse duration, amplitude, frequency, and inter-pulse interval may be as important as total amount of hormone in determining target(More)
Caloric restriction and hormone treatment delay reproductive senescence in female mammals, but a natural model of decelerated reproductive aging does not presently exist. In addition to describing such a model, this study shows that an abiotic signal (photoperiod) can induce physiological changes that slow senescence. Relative to animals born in April,(More)
  • 1