Learn More
Passive mechanical containment of failing left ventricle (LV) with the Acorn Cardiac Support Device (CSD) was shown to prevent progressive LV dilation in dogs with heart failure (HF) and increase ejection fraction. To examine possible mechanisms for improved LV function with the CSD, we examined the effect of CSD therapy on the expression of cardiac stretch(More)
BACKGROUND In heart failure (HF), aldosterone has been implicated in the formation of reactive interstitial fibrosis, a maladaptation that contributes to left ventricular (LV) remodeling. Eplerenone is a novel selective aldosterone blocker. The present study examined the effects of long-term monotherapy with eplerenone on the progression of LV dysfunction(More)
Neutrophil accumulation and activation of the complement system with subsequent deposition of the cytolytic membrane attack complex (MAC) have been implicated in the pathogenesis of myocardial ischemia/reperfusion injury. The MAC, when present in high concentrations, promotes target cell lysis. However, relatively little is known about the potential(More)
It has been proposed that the hemodynamic deterioration associated with heart failure (HF) may be due in part to ongoing loss of viable cardiac myocytes through apoptosis. Hypoxia has been shown to promote apoptosis in normal cardiomyocytes. Adaptation and maladaptations inherent to heart failure can modify the susceptibility of cells to different stress(More)
BACKGROUND Apoptosis may contribute to the myocardial dysfunction associated with heart failure (HF). Activation of the p38 MAPK cascade can induce apoptosis in non-cardiac cells through increased expression of Fas-L, or through decreased expression of cyclin D(1). AIMS We tested the hypothesis that hypoxia (HX), angiotensin-II (A-II) and norepinephrine(More)
Sublytic complement attack can elicit protective cellular responses without precipitating cell death. Our investigation examined the effects of non-lethal complement activation in isolated hearts. New Zealand white rabbit hearts were subjected to 30 min of ischemia followed by 1 h of reperfusion. Prior to ischemia, hearts were perfused for 20 min with 0.5%(More)
Glycosaminoglycans, including heparin, have been demonstrated both in vitro and in vivo to protect the ischemic myocardium against reperfusion injury. In the present study, we sought to determine whether the cardioprotective effects of heparin administration could be reversed by the heparin-degrading enzyme heparinase. New Zealand white rabbits were(More)
1. The direct cardiac electrophysiological and antifibrillatory actions of tedisamil (KC-8857) were studied in rabbit isolated hearts. 2. Tedisamil (1, 3, and 10 microM), prolonged the ventricular effective refractory period (VRP) from 120 +/- 18 ms (baseline) to 155 +/- 19, 171 +/- 20, and 205 +/- 14 ms, respectively. Three groups of isolated hearts (n = 6(More)
Activation of the complement system contributes to the tissue destruction associated with myocardial ischemia/reperfusion. Pentosan polysulfate (PPS), a negatively charged sulfated glycosaminoglycan (GAG) and an effective inhibitor of complement activation, was studied for its potential to decrease infarct size in an experimental model of myocardial(More)
BACKGROUND Nonexcitatory electrical, signals termed cardiac contractility modulation (CCM) have been shown to improve contractile force of isolated papillary muscles. In this study, we examined the effects of CCM signal delivery on left ventricular function in dogs with chronic heart failure (HF). METHODS AND RESULTS Chronic HF (ejection fraction </=35%)(More)