Learn More
We present a new family of subgradient methods that dynamically incorporate knowledge of the geometry of the data observed in earlier iterations to perform more informative gradient-based learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very predictive but rarely seen features. Our paradigm stems from recent(More)
In an online convex optimization problem a decision-maker makes a sequence of decisions, i.e., chooses a sequence of points in Euclidean space, from a fixed feasible set. After each point is chosen, it encounters a sequence of (possibly unrelated) convex cost functions. Zinkevich (ICML 2003) introduced this framework, which models many natural repeated(More)
Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function. We present a simple meta algorithm that unifies these disparate algorithms and drives them as simple(More)
We introduce an efficient algorithm for the problem of online linear optimization in the bandit setting which achieves the optimal O * (√ T) regret. The setting is a natural generalization of the non-stochastic multi-armed bandit problem, and the existence of an efficient optimal algorithm has been posed as an open problem in a number of recent papers. We(More)
We give a novel algorithm for stochastic strongly-convex optimization in the gradient oracle model which returns an O(1 T)-approximate solution after T gradient updates. This rate of convergence is optimal in the gradient oracle model. This improves upon the previously known best rate of O(log(T) T), which was obtained by applying an online strongly-convex(More)
We propose an algorithm for approximately maximizing a concave function over the bounded semi-definite cone, which produces sparse solutions. Sparsity for SDP corresponds to low rank matrices, and is a important property for both computational as well as learning theoretic reasons. As an application, building on Aaronson's recent work, we derive a linear(More)
Prediction from expert advice is a fundamental problem in machine learning. A major pillar of the field is the existence of learning algorithms whose average loss approaches that of the best expert in hindsight (in other words, whose average regret approaches zero). Traditionally the regret of online algorithms was bounded in terms of the number of(More)
First-order stochastic methods are the state-of-the-art in large-scale machine learning optimization owing to efficient per-iteration complexity. Second-order methods, while able to provide faster convergence, have been much less explored due to the high cost of computing the second-order information. In this paper we develop second-order stochastic methods(More)
Semidefinite programming (SDP) relaxations appear in many recent approximation algorithms but the only general technique for solving such SDP relaxations is via interior point methods. We use a Lagrangian-relaxation based technique (modified from the papers of Plotkin, Shmoys, and Tardos (PST), and Klein and Lu) to derive faster algorithms for approximately(More)