El Barbary Hassan

  • Citations Per Year
Learn More
Recently, cellulose nanofibers (CNFs) have received wide attention in green nanomaterial technologies. Production of CNFs from agricultural residues has many economic and environmental advantages. In this study, four different CNFs were prepared from cotton stalks by different chemical treatments followed by ultrasonication. CNFs were prepared from(More)
This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-d-glucopyranose) is the major anhydrosugar compound resulting from the(More)
Urea-melamine-formaldehyde (UMF) resins with 2.5% and 5.0% melamine levels added at the beginning of the third step of the typical urea-formaldehyde (UF) synthesis procedure were synthesized with an F/(U+M) mole ratio of 1.05 and evaluated as particleboard binders to investigate the positive effects of melamine on the formaldehyde content and physical(More)
The development of biobased active films for use in food packaging is increasing due to low cost, environmental appeal, renewability and availability. The objective of this research was to develop an effective and complete green approach for the production of bionanocomposite films with enhanced mechanical and barrier properties. This was accomplished by(More)
Developing optimum treatment and separation procedures for hemicellulose components of lignocellulosic biomass could be useful in ethanol fermentation processes and obtaining pure hemicelluloses as biopolymers. Sugarcane bagasse analyses indicate that xylose is the major hemicellulose component constituting 17.7% of dry bagasse weight. In this study the(More)
A previous study of synthesizing low mole ratio urea–formaldehyde (UF) and urea–melamine–formaldehyde (UMF) resins, which included an acidic reaction step at the beginning of the typical resin synthesis procedure to obtain higher uron-type methylene–ether group contents, was repeated with the acidic reaction step extended to a higher viscosity. Compared to(More)
Kraft lignin (KL) was thermally treated at 500 to 1000 °C in an inert atmosphere. Carbon nanostructure parameters of thermally treated KL in terms of amorphous carbon fraction, aromaticity, and carbon nanocrystallites lateral size (La), thickness (Lc), and interlayer space (d002) were analyzed quantitatively using X-ray diffraction, Raman spectroscopy, and(More)
Low mole ratio urea-melamine-formaldehyde (UMF) resins synthesized with 2.5% and 5.0% melamine levels added at the beginning, middle, and end points of the first alkaline step of the typical urea-formaldehyde (UF) resin synthesis procedure were compared with typical UMF resins synthesized with melamine additions made at the final alkaline step. Various(More)
Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with(More)
Bio-oil is a promising alternative source of energy produced from fast pyrolysis of biomass. Increasing the viscosity of bio-oil during storage is a major problem that can be controlled by the addition of methanol or other alcohols. This paper reports the results of our investigation of the reactions of short chain alcohols with aldehydes and acids in(More)
  • 1