Learn More
Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell(More)
This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased(More)
BACKGROUND Verapamil (Ver) is a well known, worldwide used drug to correct cardiac arrhythmias. The main Ver target is the L-type calcium channel. Modulation of calcium homeostasis vaulted Ver into use in medical applications. METHODS To examine COLO 205 cells morphology after Ver treatment, an electron microscopy technique was used. RESULTS This study(More)
Pheochromocytoma PC-12 cells are immune to physiological stimuli directed to evoke programmed cell death. Besides, metabolic inhibitors are incapable of sensitizing PC-12 cells to extrinsic or intrinsic apoptosis unless they are used in toxic concentrations. Surprisingly, these cells become receptive to cell deletion after human APP-sw gene expression. We(More)
Forty years after Singer and Nicolson (1972) announced the fluid mosaic membrane model a number of new facts caused updating of their historic view. Plasma membrane is not uniform in state of matter, i.e. fluid portion is represented by glycerophospholipids spontaneously mounted into lipid bilayer in disordered manner (Ld - liquid disordered). In such(More)
Verapamil, an L-type calcium channel blocker, has been used successfully to treat cardiovascular diseases. Interestingly, we have recently shown that treatment of cancer cells with verapamil causes an effect on autophagy. As autophagy is known to modulate chemotherapy responses, this prompted us to explore the impact of verapamil on autophagy and cell(More)
Epigallocatechin-3-gallate (EGCG) is an important bioactive constituent of green tea extract (GTE) that was widely believed to reduce proliferation of many cancer cell lines. The purpose of this study was to verify the possible pro-apoptotic action of GTE/EGCG in human colon adenocarcinoma COLO 205 cells. The effect of EGCG/GTE treatments on cell viability(More)
  • 1