Ekkehard Schleußner

Learn More
The increasing functional integrity of the organism during fetal maturation is connected with increasing complex internal coordination. We hypothesize that time scales of complexity and dynamics of heart rate patterns reflect the increasing inter-dependencies within the fetal organism during its prenatal development. We investigated multi-scale complexity,(More)
Brain morphology varies during the course of the menstrual cycle, with increases in individual gray matter volume at the time of ovulation. This study implemented our previously presented BrainAGE framework to analyze short-term neuroanatomical changes in healthy young women due to hormonal changes during the menstrual cycle. The BrainAGE approach(More)
Fetal brain development involves the development of the neuro-vegetative (autonomic) control that is mediated by the autonomic nervous system (ANS). Disturbances of the fetal brain development have implications for diseases in later postnatal life. In that context, the fetal functional brain age can be altered. Universal principles of developmental biology(More)
Disturbances of fetal autonomic brain development can be evaluated from fetal heart rate patterns (HRP) reflecting the activity of the autonomic nervous system. Although HRP analysis from cardiotocographic (CTG) recordings is established for fetal surveillance, temporal resolution is low. Fetal magnetocardiography (MCG), however, provides stable continuous(More)
Fetal movements (FM) related heart rate accelerations (AC) are an important maturation criterion. Since Doppler-based time resolution is not sufficient for accompanying heart rate variability analysis, the work is aimed at a comprehensive FM-AC analysis using magnetocardiographic recordings from fetuses during sleep.We identify FM and AC by independent(More)
Fetal maturation age assessment based on heart rate variability (HRV) is a predestinated tool in prenatal diagnosis. To date, almost linear maturation characteristic curves are used in univariate and multivariate models. Models using complex multivariate maturation characteristic curves are pending. To address this problem, we use Random Forest (RF) to(More)
With the objective of evaluating the functional maturation age and developmental disturbances we have previously introduced the fetal autonomic brain age score (fABAS) using 30 min fetal magnetocardiographic recordings (fMCG, Jena). The score is based on heart rate pattern indices that are related to universal principles of developmental biology. The(More)
  • Doktoringenieur, Dipl.-Math Karin Schwab, Gutachter, J Haueisen, Nat H Habil, Witte +7 others
  • 2008
winn beitragen und ergänzend bei der Interpretation der Ergebnisse eingesetzt werden. Abstract The aim of this work was the development of two different time-variant nonlinear methods (1) to quantify the nonlinear stability and (2) to detect and quantify quadratic phase couplings (QPC). Starting point of the methodical investigation of the nonlinear(More)
  • 1