Ekkehard Peik

Learn More
The early quantum theory of electrical conductivity in crystal lattices by Bloch and Zener [1,2] led to the striking prediction that a homogeneous static electric field induces an oscillatory rather than uniform motion of the electrons. These so-called Bloch oscillations have never been observed in natural crystals because the scattering time of the(More)
Precision comparisons of different atomic frequency standards over a period of a few years can be used for a sensitive search for temporal variations of fundamental constants. We present recent frequency measurements of the 688 THz transition in the Yb ion. For this transition frequency a record over six years is now available, showing that a possible(More)
We compare the frequencies of the 6s2S(1/2)(F = 0)-->5d2D(3/2)(F = 2) reference transition in 171Yb+ for two single ions stored in independent traps. The quadrupole moment of the 5d2D(3/2) state is measured to be 9.32(48) x 10(-40) C m2 and from the quadratic Stark shift the relevant scalar and tensor polarizabilities are determined to be alphaS(S(1/2)) -(More)
The comparison of different atomic transition frequencies over time can be used to determine the present value of the temporal derivative of the fine structure constant alpha in a model-independent way without assumptions on constancy or variability of other parameters, allowing tests of the consequences of unification theories. We have measured an optical(More)
We experimentally investigate an optical frequency standard based on the (2)S1/2(F=0)→(2)F7/2(F=3) electric octupole (E3) transition of a single trapped (171)Yb+ ion. For the spectroscopy of this strongly forbidden transition, we utilize a Ramsey-type excitation scheme that provides immunity to probe-induced frequency shifts. The cancellation of these(More)
We describe a measurement of the frequency of the S1/2(F = 0)-D3/2(F ′ = 2) transition of 171Yb+ at the wavelength 436 nm (frequency 688 THz), using a single Yb+ ion confined in a Paul trap and two cesium fountains as references. In one of the fountains, the frequency of the microwave oscillator that interrogates the cesium atoms is stabilized by the laser(More)
Accurate measurements of different transition frequencies between atomic levels of the electronic and hyperfine structure over time are used to investigate temporal variations of the fine structure constant α and the proton-to-electron mass ratio μ. We measure the frequency of the (2)S1/2→(2)F7/2 electric octupole (E3) transition in (171)Yb(+) against two(More)
We experimentally investigate an optical frequency standard based on the 467 nm (642 THz) electric-octupole reference transition (2)S(1/2)(F=0)→(2)F(7/2)(F=3) in a single trapped (171)Yb(+) ion. The extraordinary features of this transition result from the long natural lifetime and from the 4f(13)6s(2) configuration of the upper state. The(More)
We summarise the scientific and technological aspects of the SAGAS (Search for Anomalous Gravitation using Atomic Sensors) project, submitted to ESA in June 2007 in response to the Cosmic Vision 2015-2025 call for proposals. The proposed mission aims at flying highly sensitive atomic sensors (optical clock, cold atom accelerometer, optical link) on a Solar(More)