Ekaterina V. Laz

Learn More
Targeted disruption of the signal transducer and activator of transcription 5b gene (STAT5b) leads to decreased expression in male mouse liver of a male-predominant cytochrome (Cyp) 2d protein, whereas female-predominant Cyp2b proteins are increased. Presently, we characterize the effects of STAT5b deficiency on 15 specific, individual Cyp RNAs and other(More)
Hepatocyte-specific, albumin-Cre recombinase-mediated deletion of the entire mouse Stat5a-Stat5b locus was carried out to evaluate the role of signal transducer and activator of transcription 5a and 5b (STAT5ab) in the sex-dependent transcriptional actions of GH in the liver. The resultant hepatocyte STAT5ab-deficient mice were fertile, and unlike global(More)
Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation, and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal(More)
Phylogenetic footprinting was used to predict functional transcription factor binding sites (TFBS) for signal transducer and activator of transcription (STAT) 5, a GH-activated transcription factor, in the GH-responsive genes IGF-I, SOCS2, and HNF6. Each gene, including upstream (100 kb) and downstream regions (25 kb), was aligned across four species and(More)
The transcriptional repressor Bcl6 is a male-specific rat liver gene product and one of 24 early GH-response genes encoding DNA-binding proteins. Presently, the sex specificity of Bcl6 was shown to emerge at puberty, when hepatic Bcl6 mRNA was induced in males and repressed in females by the female plasma GH profile. Hepatic Bcl6 mRNA was increased to(More)
Plasma GH profiles regulate the sexually dimorphic expression of cytochromes P450 and many other genes in rat and mouse liver; however, the proximal transcriptional regulators of these genes are unknown. Presently, we characterize three liver transcription factors that are expressed in adult female rat and mouse liver at levels up to 16-fold [thymus(More)
Many genes are expressed in mammalian liver in a sexually dimorphic manner. DNA microarray analysis has shown that growth hormone (GH) and its sex-dependent pattern of pituitary secretion play a major role in establishing the sexually dimorphic patterns of liver gene expression. However, GH may exert effects on protein post-translational modification and(More)
Many genes are expressed in mammalian liver in a sexually dimorphic manner. DNA microarray analysis has shown that growth hormone (GH) and its sex-dependent pattern of pituitary secretion play a major role in establishing the sexually dimorphic patterns of liver gene expression. However, GH may exert effects on protein post-translational modification and(More)
Oxidative stress mechanism in yeast presents an innovative pathway to understand in creating the next generation of antifungal drugs. Rgc1 and Rgc2 are paralogous proteins that regulate the Fps1 glycerol channel in hyperosmotic stress. Hyperosmotic conditions lead Hog1 MAP kinase to phosphorylate Rgc2 and cause its dissociation from Fps1, allowing the(More)
  • 1